Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Understanding the genetic basis of cancer risk is a major international endeavor. The emergence of next-generation sequencing (NGS) in late 2000's has further accelerated the discovery of many cancer susceptibility genes. The use of targeted NGS-based multigene testing panels to provide comprehensive analysis of cancer susceptible genes has proven to be a viable option, with the accurate and robust detection of a wide range of clinically relevant variants in the targeted genes being crucial.
Methods: We have developed and validated a targeted NGS-based test for hereditary cancer risk assessment using Illumina's NGS platform by analyzing the protein-coding regions of 35 hereditary cancer genes with a bioinformatics pipeline that utilizes standard practices in the field. This 35-gene hereditary cancer panel is designed to identify germline cancer-causing mutations for 8 different cancers: breast, ovarian, prostate, uterine, colorectal, pancreatic, stomach cancers and melanoma. The panel was validated using well-characterized DNA specimens [NIGMS Human Genetic Cell Repository], where DNA had been extracted using blood of individuals whose genetic variants had been previously characterized by the 1000 Genome Project and the Coriell Catalog.
Results: The 35-gene hereditary cancer panel shows high sensitivity (99.9%) and specificity (100%) across 4820 variants including single nucleotide variants (SNVs) and small insertions and deletions (indel; up to 25 bp). The reproducibility and repeatability are 99.8 and 100%, respectively.
Conclusions: The use of targeted NGS-based multigene testing panels to provide comprehensive analysis of cancer susceptible genes has been considered a viable option. In the present study, we developed and validated a 35-gene panel for testing 8 common cancers using next-generation sequencing (NGS). The performance of our hereditary cancer panel is assessed across a board range of variants in the 35 genes to support clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189534 | PMC |
http://dx.doi.org/10.1186/s13053-020-00141-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!