Microbial cells can rapidly form biofilm on endotracheal tubes (ETT) causing ventilator-associated pneumonia, a serious complication in patients receiving mechanical ventilation. A novel polyamide with a good balance of hydrophilic/hydrophobic moieties was used for the embedment of green-reduction silver nanoparticles (AgNPs) for the composite-coated ETT. The films were conformal with a thickness of ∼ 17 ± 3 µm accommodating high loading of 60 ± 35 nm spherical-shaped AgNPs. The coated ETT resulted in a significant difference in reducing both planktonic growth and microbial adhesion of single and mixed-species cultures, compared with uncoated ETT ( < 0.05). A time-kill assay demonstrated rapid bactericidal effects of the coating on bacterial growth and cell adhesion to ETT surface. Biofilm formation by and , commonly encountered pathogens, was inhibited by > 96% after incubation for 72 h. Polyamide/AgNP composite-coated ETT provided a broad-spectrum activity against both Gram-positive and Gram-negative bacteria as well as and prolonged antimicrobial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2020.1759041DOI Listing

Publication Analysis

Top Keywords

planktonic growth
8
causing ventilator-associated
8
ventilator-associated pneumonia
8
composite-coated ett
8
ett
5
prolonged inhibitory
4
inhibitory effects
4
effects planktonic
4
growth adherence
4
adherence biofilm
4

Similar Publications

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Microalgae are often used in different industrial sectors and can be used as indicators of aquatic environmental health. An essential step for cultivating microalgae is assessing the cell density, which is traditionally performed through cell counting by optical microscopy (OM). However, this method has limitations, mainly in terms of runtime and low reproducibility.

View Article and Find Full Text PDF

Small RNAs (sRNAs) have emerged as key regulators of transcriptional factors and components within regulatory networks that govern bacterial biofilm formation. This study aimed to explore the regulatory role of the PA3299.1 sRNA in controlling biofilm formation in P.

View Article and Find Full Text PDF

Extracellular vesicles of Candida albicans show dual effects on Enterococcus faecalis growth and virulence: A laboratory-based investigation.

Int Endod J

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.

Aim: Previous studies have shown the important relationships between Enterococcus faecalis and Candida albicans in post-treatment endodontic disease (PTED). However, the fungal-bacterial interactions and their possible functional routes are less understood. In this study, we investigated the effect of extracellular vesicles (EVs) derived from C.

View Article and Find Full Text PDF

Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!