Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synergistic improvement in leaf photosynthetic area and rate is essential for enhancing crop yield. However, reduction in leaf area occurs earlier than that in the photosynthetic rate under potassium (K) deficiency stress. The photosynthetic capacity and anatomical characteristics of oilseed rape (Brassica napus) leaves in different growth stages under different K levels were observed to clarify the mechanism regulating this process. Increased mesophyll cell size and palisade tissue thickness, in K-deficient leaves triggered significant enlargement of mesophyll cell area per transverse section width (S/W), in turn inhibiting leaf expansion. However, there was only a minor difference in chloroplast morphology, likely because of K redistribution from vacuole to chloroplast. As K stress increased, decreased mesophyll surface exposed to intercellular space and chloroplast density induced longer distances between neighbouring chloroplasts (D ) and decreased the chloroplast surface area exposed to intercellular space (S /S); conversely this induced a greater limitation imposed by the cytosol on CO transport, further reducing the photosynthetic rate. Changes in S/W associated with mesophyll cell morphology occurred earlier than changes in S /S and D , inducing a decrease in leaf area before photosynthetic rate reduction. Adequate K nutrition simultaneously increases photosynthetic area and rate, thus enhancing crop yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!