Radiomics and deep learning in lung cancer.

Strahlenther Onkol

Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy.

Published: October 2020

Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00066-020-01625-9DOI Listing

Publication Analysis

Top Keywords

deep learning
12
lung cancer
12
radiomics deep
8
radiomics
6
lung
6
learning lung
4
cancer lung
4
lung malignancies
4
malignancies extensively
4
extensively characterized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!