Molecular detection of Zika virus (ZIKV) is a key element of outbreak management. Multiple PCR and isothermal ZIKV assays targeting different ZIKV sequences have been published. In this study, we compared a qRT-PCR, 2 RT-LAMP assays (based on different primer design approaches), and an RT-RPA for the detection of African and Asian/American lineages of ZIKV isolates from human, mosquito, and monkey. Results showed that RT-LAMP detected 100% of samples with a time threshold (Tt) of 18.01 ± 11.71 min while qRT-PCR detected 88.88% of samples with a Tt of 58.30 ± 16.58 min and RT-RPA 50% of samples with a Tt of 3.70 ± 0.44 min.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0581-3_14DOI Listing

Publication Analysis

Top Keywords

zika virus
8
comparative analysis
4
analysis zika
4
virus detection
4
detection rt-qpcr
4
rt-qpcr rt-lamp
4
rt-lamp rt-rpa
4
rt-rpa molecular
4
molecular detection
4
detection zika
4

Similar Publications

Background: Zika virus (ZIKV) continues to circulate in Southeast Asia following the 2015-2016 global epidemic, posing an ongoing risk of importation and disease spread for Singapore, a tropical city-state in the region. The virus remains a threat to pregnant women and their fetuses due to the risk of Congenital Zika Syndrome (CZS). Vaccines currently in development offer hope for reducing ZIKV infections and CZS cases.

View Article and Find Full Text PDF

A Lambda-evo (λ) phage platform for Zika virus E protein display.

Appl Microbiol Biotechnol

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No, 2508, C.P. 07360, Mexico City, Mexico.

One of the most significant bacteriophage technologies is phage display, in which heterologous peptides are exhibited on the virion surface. This work describes the display of λ decorative protein D linked to the E protein domain III of Zika virus (D-ZE), to the GFP protein (D-GFP), or to different domain III epitopes of the E protein (D-TD), exhibited on the surface of an in vitro evolved lambda phage (λ). This phage harbors a gene D deletion and was subjected to directed evolution using Escherichia coli W3110/pD-ZE as background.

View Article and Find Full Text PDF

Early and Long-Term Adverse Outcomes of In Utero Zika Exposure.

Pediatrics

January 2025

Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.

Background: Zika virus (ZIKV) infection during pregnancy can lead to congenital Zika syndrome (CZS) and may result in neurodevelopmental alterations in exposed children, with and without CZS. This study aimed to evaluate ZIKV infection during pregnancy as a risk factor for early and long-term adverse outcomes.

Methods: This retrospective-prospective, matched cohort study was conducted in Mato Grosso do Sul, Brazil.

View Article and Find Full Text PDF

Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system.

View Article and Find Full Text PDF

Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!