The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already assumed pandemic proportions, affecting over 100 countries in few weeks. A global response is needed to prepare health systems worldwide. Covid-19 can be diagnosed both on chest X-ray and on computed tomography (CT). Asymptomatic patients may also have lung lesions on imaging. CT investigation in patients with suspicion Covid-19 pneumonia involves the use of the high-resolution technique (HRCT). Artificial intelligence (AI) software has been employed to facilitate CT diagnosis. AI software must be useful categorizing the disease into different severities, integrating the structured report, prepared according to subjective considerations, with quantitative, objective assessments of the extent of the lesions. In this communication, we present an example of a good tool for the radiologist (Thoracic VCAR software, GE Healthcare, Italy) in Covid-19 diagnosis (Pan et al. in Radiology, 2020. https://doi.org/10.1148/radiol.2020200370). Thoracic VCAR offers quantitative measurements of the lung involvement. Thoracic VCAR can generate a clear, fast and concise report that communicates vital medical information to referring physicians. In the post-processing phase, software, thanks to the help of a colorimetric map, recognizes the ground glass and differentiates it from consolidation and quantifies them as a percentage with respect to the healthy parenchyma. AI software therefore allows to accurately calculate the volume of each of these areas. Therefore, keeping in mind that CT has high diagnostic sensitivity in identifying lesions, but not specific for Covid-19 and similar to other infectious viral diseases, it is mandatory to have an AI software that expresses objective evaluations of the percentage of ventilated lung parenchyma compared to the affected one.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197034PMC
http://dx.doi.org/10.1007/s11547-020-01195-xDOI Listing

Publication Analysis

Top Keywords

thoracic vcar
12
artificial intelligence
8
software
6
covid-19
5
intelligence codify
4
lung
4
codify lung
4
lung covid-19
4
covid-19 patients
4
patients spread
4

Similar Publications

Long COVID in Young Patients: Impact on Lung Volume Evaluated Using Multidetector CT.

Tomography

June 2023

Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome-Academic Diagnostic Imaging Division, I.C.O.T. Hospital, Via Franco Faggiana, 1668, 04100 Latina, Italy.

Purpose: To evaluate using quantitative analysis on chest CT images a possible lung volume reduction in Long COVID patients who complain mild respiratory symptoms, with chest CT negative for inflammatory findings.

Materials And Methods: CT images of patients from 18 to 40 years old who underwent chest CT scan at our institution were analyzed retrospectively, using AwServer Thoracic VCAR software for a quantitative study. Exclusion criteria were inflammatory findings at CT, previous lung surgery, lung cancer, and breath artifacts that invalidate the quality of images.

View Article and Find Full Text PDF

Objective: To investigate two commercial software and their efficacy in the assessment of chest CT sequelae in patients affected by COVID-19 pneumonia, comparing the consistency of tools.

Materials And Methods: Included in the study group were 120 COVID-19 patients (56 women and 104 men; 61 years of median age; range: 21-93 years) who underwent chest CT examinations at discharge between 5 March 2020 and 15 March 2021 and again at a follow-up time (3 months; range 30-237 days). A qualitative assessment by expert radiologists in the infectious disease field (experience of at least 5 years) was performed, and a quantitative evaluation using thoracic VCAR software (GE Healthcare, Chicago, Illinois, United States) and a pneumonia module of ANKE ASG-340 CT workstation (HTS Med & Anke, Naples, Italy) was performed.

View Article and Find Full Text PDF

Purpose: To compare different commercial software in the quantification of Pneumonia Lesions in COVID-19 infection and to stratify the patients based on the disease severity using on chest computed tomography (CT) images.

Materials And Methods: We retrospectively examined 162 patients with confirmed COVID-19 infection by reverse transcriptase-polymerase chain reaction (RT-PCR) test. All cases were evaluated separately by radiologists (visually) and by using three computer software programs: (1) Thoracic VCAR software, GE Healthcare, United States; (2) Myrian, Intrasense, France; (3) InferRead, InferVision Europe, Wiesbaden, Germany.

View Article and Find Full Text PDF

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already assumed pandemic proportions, affecting over 100 countries in few weeks. A global response is needed to prepare health systems worldwide. Covid-19 can be diagnosed both on chest X-ray and on computed tomography (CT).

View Article and Find Full Text PDF

Purpose: Investigate whether F-FDG PET-CT has the potential to predict the major pathologic response (MPR) to neoadjuvant sintilimab in resectable NSCLC patients, and the potential of sifting patients who probably benefit from immunotherapy.

Methods: Treatment-naive patients with resectable NSCLC (stage IA-IIIB) received two cycles of sintilimab (200 mg, intravenously, day 1 and 22). Surgery was performed between day 29 and 43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!