We describe our connectomics pipeline for processing anterograde tracer injection data for the brain of the common marmoset (Callithrix jacchus). Brain sections were imaged using a batch slide scanner (NanoZoomer 2.0-HT) and we used artificial intelligence to precisely segment the tracer signal from the background in the fluorescence images. The shape of each brain was reconstructed by reference to a block-face and all data were mapped into a common 3D brain space with atlas and 2D cortical flat map. To overcome the effect of using a single template atlas to specify cortical boundaries, brains were cyto- and myelo-architectonically annotated to create individual 3D atlases. Registration between the individual and common brain cortical boundaries in the flat map space was done to absorb the variation of each brain and precisely map all tracer injection data into one cortical brain space. We describe the methodology of our pipeline and analyze the accuracy of our tracer segmentation and brain registration approaches. Results show our pipeline can successfully process and normalize tracer injection experiments into a common space, making it suitable for large-scale connectomics studies with a focus on the cerebral cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-020-02073-yDOI Listing

Publication Analysis

Top Keywords

tracer injection
16
brain
9
artificial intelligence
8
connectomics pipeline
8
injection data
8
common brain
8
brain space
8
atlas cortical
8
flat map
8
cortical boundaries
8

Similar Publications

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Optimizing Low-Dose [18F]FDG-PET/CT Scans: Ensuring Quality Amid Radiotracer Availability Challenges - Insights from a Peripheral Tertiary Care Center.

Indian J Nucl Med

November 2024

Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.

Background: The introduction of positron emission tomography/computed tomography (PET/CT) has significantly advanced medical imaging. In oncology, F-fluorodeoxyglucose (F-FDG) PET/CT is particularly crucial for staging, evaluating treatment response, monitoring follow-up, and planning radiotherapy. However, in resource limiting hospitals, the availability of fluorine-labeled F-FDG limits optimal scan acquisition.

View Article and Find Full Text PDF

Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have shown great potential for treating various diseases. Translating EVs-based therapy from bench to bedside remains challenging due to inefficient delivery of EVs to the injured area and lack of techniques to visualize the entire targeting process. Here we developed a dopamine surface functionalization platform that facilitates easy and simultaneous conjugation of targeting peptide and multi-mode imaging probes to the surface of EVs.

View Article and Find Full Text PDF

Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!