Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts of cellulose, lignin, and hemicellulose.

Environ Sci Pollut Res Int

Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China.

Published: July 2020

Effects of surface modification by carboxyl group on Pb adsorption performances and stability of peanut shell and its extracts (cellulose, lignin, and hemicellulose) were investigated. Stability of the biosorbents was measured by determining organic compound release amount (TOC). Results showed that adsorption capacity of peanut shell and the extract was poor and stability of them was not good enough. Amount of organic compound released from the unmodified sorbents followed the order: cellulose > lignin > peanut shell > hemicellulose. Hemicellulose was the main organic compound release resource for the raw peanut shell. Due to the poor stability of the raw materials, peanut and its extract could not be used directly in the practical waste water treatment. After modification, adsorption capacity of peanut shell, cellulose, lignin, and hemicellulose increased by 4- to 6-folds. Stability of the modified sorbents also increased significantly, and TOC determined for the modified peanut shell, cellulose, and hemicellulose was lower than 4.0 mg L in the optimum pH range from 4.0 to 6.0 even using for 30 days, which was lower than the drinking water standard in China. Modified peanut shell and its extract except for lignin could be used safely in pH ranged from 4.0 to 6.0. Surface modification could improve the adsorption performances and stability of the biosorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09055-xDOI Listing

Publication Analysis

Top Keywords

peanut shell
32
cellulose lignin
16
surface modification
12
lignin hemicellulose
12
organic compound
12
peanut
9
effects surface
8
stability peanut
8
shell
8
shell extracts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!