We study the cooperation and segregation dynamics of binary mixtures of active and passive particles on a sphere. According to the competition between rotational diffusion and polar alignment, we find three distinct phases: a mixed phase and two different demixed phases. When rotational diffusion dominates the dynamics, the demixing is due to the aggregation of passive particles, where active and passive particles respectively occupy two hemispheres. When polar alignment is dominated, the demixing is caused by the aggregation of active particles, where active particles occupy the equator of the sphere and passive particles occupy the two poles of the sphere. In this case, there exist a circulating band cluster and two cambered surface clusters, which is a purely curvature-driven effect with no equivalent in the planar model. When rotational diffusion and polar alignment are comparable, particles are completely mixed. Our findings are relevant to the experimental pursuit of segregation dynamics of binary mixtures on curved surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm00281j | DOI Listing |
BMC Infect Dis
January 2025
Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The challenge of dealing with isolated reactive treponemal chemiluminescence immunoassay (CIA) results in clinical practice has prompted the development of a more efficient algorithm for distinguishing true infection from false reactivity in isolated CIA sera.
Methods: A prospective cohort study was conducted at Wuhan Tongji Hospital, involving 119,002 individuals screened for syphilis using CIA from January 1, 2015, to January 6, 2017. Samples with reactive CIA results underwent simultaneous testing with the T.
ACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Heliyon
December 2024
Mechanical Engineering Division, Faculty of Engineering, Khon Kaen University, Thailand.
Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.
View Article and Find Full Text PDFJ Vasc Anom (Phila)
December 2024
Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.
View Article and Find Full Text PDFUrolithiasis
December 2024
Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010, Graz, Austria.
The primary objective of urolithiasis therapy is complete stone removal and highest stone-clearance rates possible to minimize recurrence. A novel approach that employs a magnetic suspension and a magnetic probe for the passive collection and removal of small residual fragments was developed. This study assessed the feasibility of this system in porcine models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!