Ionic liquids (ILs) are increasingly receiving interest for a wide range of applications. However, for many applications their cost and/or viscosity can be too high. This can be addressed by using protic ionic liquids as cheaper alternatives, and through mixing with molecular solvents. However, mixing ILs with a molecular solvent adds another dimension to the compositional space, as well as increasing the complexity of solvent-solute interactions. In this study, we have investigated the solvation properties of binary mixtures of PILs with molecular solvents. The selected binary solvent systems are the PILs ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) combined with either water, methanol, acetonitrile or DMSO. In addition, water is combined with the other molecular solvents for comparison. The mole fractions of the secondary solvents were 0, 0.25, 0.5, 0.75, 0.9 and 1 for all combinations, which resulted in a total of 66 solvent mixtures. The solvation properties in each of these mixtures were determined from spectroscopic measurements of 4 well-known solvatochromic probe molecules as solutes. The solvation properties were comparatively investigated, and interpreted, in terms of the specific and non-specific interactions between PIL-solvent, PIL-solute and solvent-solute. All 66 solvent mixtures were also analysed using FTIR with no probe molecules present. In addition, through molecular dynamics simulations, the dye-solvent interactions were simulated for two of the dye molecules in water-EAN binary systems, and the radial distribution functions for the key interactions were obtained. The results showed that the solvation parameters of the binary mixtures deviated considerably from the ideal solvation behaviour. In many cases, bulk compositions and the estimated excess compositions in the solvation shells of the probes were different, suggesting preferential solvation, the extent of which is solute dependent. Our results clearly show that using PILs in a mixture with molecular solvents can strongly enhance the solvation capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00201a | DOI Listing |
ACS Phys Chem Au
January 2025
Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.
View Article and Find Full Text PDFACS Omega
January 2025
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
In this paper, we present a molecular dynamics study of the structural and dynamical properties of γ-valerolactone (GVL) both as a standalone solvent and in electrolyte formulations for electrochemistry applications. This study involves developing a new parameterization of a polarizable forcefield and applying it to simulate pure GVL and selected salt solutions. The forcefield was validated with experimental bulk data and quantum mechanical calculations, with excellent agreement obtained in both cases.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Polymers for Electronics and Photonics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic.
The structural response of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (H NMR, P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!