Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368015PMC
http://dx.doi.org/10.1038/s41396-020-0663-xDOI Listing

Publication Analysis

Top Keywords

host genetics
20
methane emission
16
bayesian model
12
genetic markers
12
host
11
microbiota
9
rumen microbiota
8
methane
8
dairy cows
8
methane emissions
8

Similar Publications

Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea.

Curr Microbiol

January 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.

View Article and Find Full Text PDF

Recovery of nearly 3,000 archaeal genomes from 152 terrestrial geothermal spring metagenomes.

Sci Data

January 2025

Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Terrestrial geothermal springs, reminiscent of early Earth conditions, host diverse and abundant populations of Archaea. In this study, we reconstructed 2,949 metagenome-assembled genomes (MAGs) from 152 metagenomes collected over six years from 48 geothermal springs in Tengchong, China. Among these MAGs, 1,431 (49%) were classified as high-quality, while 1,518 (51%) were considered as medium-quality.

View Article and Find Full Text PDF

Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.

View Article and Find Full Text PDF

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

Transcriptome analysis reveals significant discrepancies between two in vitro models of host-trematode interaction.

Acta Trop

January 2025

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia. Electronic address:

Cell models emulating an in vitro parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate in vitro model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!