The transmission of "lumpy skin disease virus" (LSDV) has prompted intensive research efforts due to the rapid spread and high impact of the disease in recent years, especially in Eastern Europe and Balkan countries. In this study, we experimentally evaluate the vaccine-derived virulent recombinant LSDV strain (Saratov/2017) and provide solid evidence on the capacity of the virus for transmission in a vector-proof environment. In the 60-day long experiment, we used inoculated bulls (IN group) and two groups of in-contact animals (C1 and C2), with the former (C1) being in contact with the inoculated animals at the onset of the trial and the latter (C2) being introduced at day 33 of the experiment. The infection in both groups of contact animals was confirmed clinically, serologically and virologically, and viremia was demonstrated in blood, nasal and ocular excretions, using molecular tools. Further studies into LSDV biology are a priority to gain insights into whether the hypothesized indirect contact mode evidenced in this study is a de novo-created feature, absent from both parental stains of the novel (recombinant) LSDV isolate used, or whether it was dormant, but then unlocked by the process of genetic recombination. Author summary: In global terms, LSD has been termed a "neglected disease" due to its historic natural occurrence of being restricted to Africa and, occasionally, Israel. However, after its slow spread throughout the Middle East, the disease is now experiencing a resurgence of research interest following a recent and rapid spread into more northern latitudes. Given the dearth of solid findings on potential transmission mechanisms, no efficient or reliable control program currently exists, which does not involve the use of live attenuated vaccines or stamping out policies - both of which are controversial for implementation in non-endemic regions or countries. The vector-borne mode is the only working concept currently available, but with scarce evidence to support the aggressive spread northwards - except for human-assisted spread, including legal or illegal animal transportation. The emergence of outbreaks is not consistently linked to weather conditions, with the potential for new outbreaks to occur and spread rapidly. Here, for the first time, we provide evidence for indirect contact-mode transmission for a naturally-occurring recombinant LSDV isolated from the field. In an insect-proof facility, we obtained solid evidence that the novel LSDV strain can pass to in-contact animals. Given the recombinant nature of the virus utilised, its genetic background relating to the observed transmission pattern within the study needs to be delineated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198617 | PMC |
http://dx.doi.org/10.1038/s41598-020-64029-w | DOI Listing |
Front Immunol
December 2024
College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China.
Introduction: Bovine viral diarrhea virus (BVDV), a positive-sense single-stranded RNA virus, causes significant economic losses in the cattle industry. Current diagnostic methods for BVDV exhibit variable sensitivity and specificity, underscoring the need for more rapid and accurate detection approaches. Here, we developed a novel competitive ELISA (cELISA) to detect antibodies against the BVDV E2 protein.
View Article and Find Full Text PDFMicrob Pathog
December 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, China. Electronic address:
Virus Genes
October 2024
Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
Lumpy skin disease (LSD), a viral disease of cattle, can be acute, subacute, or inactive. It is distinguished by fever and the abrupt emergence of firm, confined cutaneous nodules that usually necrotize. Similar lesions may occur in the skeletal muscles and the mucosae of the digestive and respiratory tracts.
View Article and Find Full Text PDFAnaerobe
October 2024
ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India. Electronic address:
Objective: Flagellin protein, an integral component of flagella, provides motility to several bacterial species and also acts as a candidate antigen in diagnostics and subunit vaccines. The bulk production of flagellin with retention of all conformational epitopes using recombinant protein technology is of paramount importance in the development of pathogen-specific immuno-assays and vaccines. We describe the production of highly soluble and immuno-reactive rFliA(C) protein of Clostridium chauvoei, a causative agent of blackleg or black quarter (BQ) affecting cattle and small ruminants worldwide.
View Article and Find Full Text PDFJ Virol Methods
September 2024
CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!