MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics.

Oncogenesis

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Published: May 2020

Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198506PMC
http://dx.doi.org/10.1038/s41389-020-0227-yDOI Listing

Publication Analysis

Top Keywords

mir-93
13
microtubule dynamics
12
prognosis pancreatic
8
pancreatic cancer
8
mir-93 tumor
8
tumor levels
8
pdac patients
8
mir-93 overexpression
8
cell proliferation
8
proliferation migration
8

Similar Publications

Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.

Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.

View Article and Find Full Text PDF

Accurate normalization in miRNA studies requires the use of appropriate endogenous controls, which can vary significantly depending on cell types, treatments, and physiological or pathological conditions. This study aimed to identify suitable endogenous miRNA controls for neural progenitor cells (NPCs) and hippocampal tissues, both of which play crucial roles in neurogenesis. Using small RNA sequencing, we identified the most stable miRNAs in primary mouse NPCs and hippocampal tissues and accessed their stability using NormFinder analysis.

View Article and Find Full Text PDF

Exosomes derived from fibroblasts in DFUs delay wound healing by delivering miR-93-5p to target macrophage ATG16L1.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China. Electronic address:

Diabetes is an extremely costly disease, one-third of which are attributed to the management of diabetic foot disease including chronic, non-healing, diabetic foot ulcers (DFUs). Therefore, much effort is needed to understand the pathogenesis of DFUs and novel therapeutics. We utilized exosome staining to confirm the interaction between fibroblast-derived exosomes and macrophages.

View Article and Find Full Text PDF

LncRNA-MEG3/miR-93-5p/SMAD7 axis mediates proliferative and inflammatory phenotypes of fibroblast-like synoviocytes in rheumatoid arthritis.

Int J Biol Macromol

January 2025

Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:

Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets‌ aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.

View Article and Find Full Text PDF

Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!