Roughly 10% of eukaryotic transmembrane proteins are found on the nuclear membrane, yet how such proteins target and translocate to the nucleus remains in dispute. Most models propose transport through the nuclear pore complexes, but a central outstanding question is whether transit occurs through their central or peripheral channels. Using live-cell high-speed super-resolution single-molecule microscopy we could distinguish protein translocation through the central and peripheral channels, finding that most inner nuclear membrane proteins use only the peripheral channels, but some apparently extend intrinsically disordered domains containing nuclear localization signals into the central channel for directed nuclear transport. These nucleoplasmic signals are critical for central channel transport as their mutation blocks use of the central channels; however, the mutated proteins can still complete their translocation using only the peripheral channels, albeit at a reduced rate. Such proteins can still translocate using only the peripheral channels when central channel is blocked, but blocking the peripheral channels blocks translocation through both channels. This suggests that peripheral channel transport is the default mechanism that was adapted in evolution to include aspects of receptor-mediated central channel transport for directed trafficking of certain membrane proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198523PMC
http://dx.doi.org/10.1038/s41467-020-16033-xDOI Listing

Publication Analysis

Top Keywords

peripheral channels
24
central channel
16
membrane proteins
12
channel transport
12
channels
9
nucleoplasmic signals
8
nuclear membrane
8
central
8
central peripheral
8
peripheral
7

Similar Publications

How to Convert a 3D Printer to Personal Automated Liquid Handler for Life Science Workflows.

SLAS Technol

December 2024

Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA. Electronic address:

Automated liquid handlers are fundamental in modern life science laboratories, yet their high costs and large footprints often limit accessibility for smaller labs. This study presents an innovative approach to decentralizing a liquid handling system by converting a low-cost 3D printer into a customizable and accurate liquid handler. The Personal Automated Liquid Handler (PALH) system, costing ∼$400, incorporates a single-channel pipet, custom 3D-printed components, and open-source software for personalized workflows, allowing researchers to build and modify the system for specific experimental needs.

View Article and Find Full Text PDF

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.

View Article and Find Full Text PDF

Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.

View Article and Find Full Text PDF

Unlabelled: Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft, leading to two classes of compounds.

View Article and Find Full Text PDF

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!