Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures.

Nat Commun

Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Published: May 2020

Coupling myoelectric and mechanical signals during voluntary muscle contraction is paramount in human-machine interactions. Spatiotemporal differences in the two signals intrinsically arise from the muscular excitation-contraction process; however, current methods fail to deliver local electromechanical coupling of the process. Here we present the locally coupled electromechanical interface based on a quadra-layered ionotronic hybrid (named as CoupOn) that mimics the transmembrane cytoadhesion architecture. CoupOn simultaneously monitors mechanical strains with a gauge factor of ~34 and surface electromyogram with a signal-to-noise ratio of 32.2 dB. The resolved excitation-contraction signatures of forearm flexor muscles can recognize flexions of different fingers, hand grips of varying strength, and nervous and metabolic muscle fatigue. The orthogonal correlation of hand grip strength with speed is further exploited to manipulate robotic hands for recapitulating corresponding gesture dynamics. It can be envisioned that such locally coupled electromechanical interfaces would endow cyber-human interactions with unprecedented robustness and dexterity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198512PMC
http://dx.doi.org/10.1038/s41467-020-15990-7DOI Listing

Publication Analysis

Top Keywords

locally coupled
12
coupled electromechanical
12
electromechanical interfaces
8
muscular excitation-contraction
8
excitation-contraction signatures
8
electromechanical
4
interfaces based
4
based cytoadhesion-inspired
4
cytoadhesion-inspired hybrids
4
hybrids identify
4

Similar Publications

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

This study employed numerical simulation to investigate the dynamic response characteristics of open-web girders subjected to proximity blast loading and to compare these characteristics with those of solid-web girders. The research utilized the Coupled Eulerian-Lagrangian (CEL) method for simulation, effectively combining the advantages of both Eulerian and Lagrangian approaches. This method mitigated issues related to mesh distortion while accurately modeling the damage inflicted by blast loads on the structures.

View Article and Find Full Text PDF

Estuaries often experience multiple water quality impairments including nitrogen enrichment and elevated fecal pollution. These pollutant sources are often linked and difficult to characterize, especially in multiple use watersheds, hindering the identification of effective mitigation steps. Tillamook Bay (Oregon, USA) has a mixed-use watershed including many potential nutrient and fecal bacteria sources due to agricultural activities, human development, and local wildlife populations.

View Article and Find Full Text PDF

Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.

View Article and Find Full Text PDF

In this paper, a recurrent neural network is proposed for distributed nonconvex optimization subject to globally coupled (in)equality constraints and local bound constraints. Two distributed optimization models, including a resource allocation problem and a consensus-constrained optimization problem, are established, where the objective functions are not necessarily convex, or the constraints do not guarantee a convex feasible set. To handle the nonconvexity, an augmented Lagrangian function is designed, based on which a recurrent neural network is developed for solving the optimization models in a distributed manner, and the convergence to a local optimal solution is proven.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!