Activity of Epigenetic Inhibitors against Plasmodium falciparum Asexual and Sexual Blood Stages.

Antimicrob Agents Chemother

Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA

Published: June 2020

Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318029PMC
http://dx.doi.org/10.1128/AAC.02523-19DOI Listing

Publication Analysis

Top Keywords

epigenetic inhibitors
8
blood stages
8
≥90% inhibition
8
activity epigenetic
4
inhibitors plasmodium
4
plasmodium falciparum
4
falciparum asexual
4
asexual sexual
4
sexual blood
4
stages
4

Similar Publications

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches.

Dig Dis Sci

January 2025

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.

Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes.

View Article and Find Full Text PDF

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD.

View Article and Find Full Text PDF

Background And Aims: Sensitivity to immune checkpoint inhibitor (ICI) therapy depends in part on the genetic and epigenetic makeup of cancer cells, and CD8 T-lymphocytes that mediate immune responses. Epigenetics are heritable reversible changes in gene expression that occur without any changes in the nuclear DNA sequence or DNA copy number.

Primary Objective: i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!