The introduction of tyrosine kinase inhibitors (TKIs) directed against the catalytic activity of the ABL tyrosine kinase has considerably improved the outcome of chronic myeloid leukemia (CML) patients in the chronic phase of the disease. Indeed, these individuals currently show a life-expectancy comparable to those of healthy subjects. Currently, five TKIs (imatinib, dasatinib, nilotinib, bosutinib and ponatinib) are approved for the treatment of CML and can be used as first, second or further lines of treatment according to disease risk scores, patient comorbidities and the presence of known TKI resistance mechanisms. In fact, 15-20% of all CML patients fail to achieve optimal responses according to the current definitions of the European Leukemia Network and will require sequential TKI treatment to avoid disease progression. In this review, we present the state of art in several crucial areas of CML management by briefly: i) depicting the domain structure of the BCR-ABL1 oncoprotein; ii) describing pivotal data concerning TKI efficacy; iii) illustrating the diverse molecular mechanisms causing TKI resistance; and iv) summarizing new ABL1-directed therapeutic approaches that are presently under investigation.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.14215DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
8
cml patients
8
tki resistance
8
cml
5
abl1-directed inhibitors
4
inhibitors cml
4
cml efficacy
4
efficacy resistance
4
resistance future
4
future perspectives
4

Similar Publications

Long non-coding RNAs (lncRNAs) and RNA N⁶-methyladenosine (m A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m A, and more lncRNAs tend to have higher m A content in CML cells resistant to tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Tyrosine phosphorylation is an important post-translational modification that regulates many biochemical signaling networks in multicellular organisms. To date, 46,000 tyrosines have been observed in human proteins, but relatively little is known about the function and regulation of most of these sites. A major challenge has been producing recombinant phospho-proteins in order to test the effects of phosphorylation.

View Article and Find Full Text PDF

SMAD4 Regulates the Expression of LCK Affecting Chimeric Antigen Receptor-T Cells Proliferation Through PI3K/Akt Signaling Pathway.

J Cell Physiol

January 2025

Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!