Background: Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (HO) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP).

Results: We first studied genetic variation for HO resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to HO in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to HO. We also discovered a confounding effect of feeding behavior on assays involving supplemented food.

Conclusions: This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199327PMC
http://dx.doi.org/10.1186/s12864-020-6739-1DOI Listing

Publication Analysis

Top Keywords

genetic variation
16
complex traits
12
peroxide resistance
8
feeding behavior
8
resistance' lines
8
genetic
6
variation
6
metabolome
5
resistance
5
metabolome link
4

Similar Publications

Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.

Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.

View Article and Find Full Text PDF

In the last decade, the emergence of variant strains of avian orthoreovirus (ARV) has caused an enormous economic impact on the poultry industry across China and other countries. This study aimed to evaluate the molecular evolution of the ARV lineages detected in Chinese commercial broiler farms. Firstly, ARV isolation and identification of commercial broiler arthritis cases from different provinces in China from 2016 to 2021 were conducted.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) with the two predominant endophenotypes-Crohn's disease (CD) and ulcerative colitis (UC)-represents a group of chronic gastrointestinal inflammatory conditions. Since most genetic associations with IBD are often limited to independent subtypes, we reported a genome-wide association study (GWAS) cross-trait analysis combined with CD and UC to enhance statistical power. Initially, we detected 256 association signals at 54 genomic susceptibility loci and further characterized the functionality of variants within these regions.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!