The mechanical behaviour of nanoporous gold has so far been the subject of studies for bicontinuous morphologies, while the load transfer between ligaments is the primary challenge for using nanoporous structures-especially membranes with nanopores-in single-molecule sensors. This work studies the pore shape effect on deformation mechanisms of nanoporous gold membranes through molecular dynamics simulations. Tension and compression tests are carried out for nanoporous gold with circular, elliptical, square and hexagonal pore shapes. A significant pore shape effect on the mechanical properties is observed with distinct load transfer capabilities. A uniform stress transfer between ligaments constitutes a distinguished set of mechanical responses for structures with the hexagonal pore shape under tension, while a unique stress distribution in nanoporous with the circular pore shape introduces a high strength and ductile structure under compression. Further to shed light on the existing experimental observations, this work provides a comprehensive study on load transfer capabilities in the mechanical behaviour of nanoporous gold for sensing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254331 | PMC |
http://dx.doi.org/10.3390/ma13092071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!