We investigated the impact of nutrient intake on hydration biomarkers in cyclists before and after a 161 km ride, including one hour after a 650 mL water bolus consumed post-ride. To control for multicollinearity, we chose a clustering-based, machine learning statistical approach. Five hydration biomarkers (urine color, urine specific gravity, plasma osmolality, plasma copeptin, and body mass change) were configured as raw- and percent change. Linear regressions were used to test for associations between hydration markers and eight predictor terms derived from 19 nutrients merged into a reduced-dimensionality dataset through serial k-means clustering. Most predictor groups showed significant association with at least one hydration biomarker: 1) Glycemic Load + Carbohydrates + Sodium, 2) Protein + Fat + Zinc, 3) Magnesium + Calcium, 4) Pinitol, 5) Caffeine, 6) Fiber + Betaine, and 7) Water; potassium + three polyols, and mannitol + sorbitol showed no significant associations with any hydration biomarker. All five hydration biomarkers were associated with at least one nutrient predictor in at least one configuration. We conclude that in a real-life scenario, some nutrients may serve as mediators of body water, and urine-specific hydration biomarkers may be more responsive to nutrient intake than measures derived from plasma or body mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282025PMC
http://dx.doi.org/10.3390/nu12051276DOI Listing

Publication Analysis

Top Keywords

hydration biomarkers
20
nutrient intake
12
impact nutrient
8
hydration
8
intake hydration
8
body mass
8
associations hydration
8
hydration biomarker
8
biomarkers
5
biomarkers exercise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!