Fog computing is a distributed infrastructure where specific resources are managed at the network border using cloud computing principles and technologies. In contrast to traditional cloud computing, fog computing supports latency-sensitive applications with less energy consumption and a reduced amount of data traffic. A fog device is placed at the network border, allowing data collection and processing to be physically close to their end-users. This characteristic is essential for applications that can benefit from improved latency and response time. In particular, in the e-Health field, many solutions rely on real-time data to monitor environments, patients, and/or medical staff, aiming at improving processes and safety. Therefore, fog computing can play an important role in such environments, providing a low latency infrastructure. The main goal of the current research is to present fog computing strategies focused on electronic-Health (e-Health) applications. To the best of our knowledge, this article is the first to propose a review in the scope of applications and challenges of e-Health fog computing. We introduce some of the available e-Health solutions in the literature that focus on latency, security, privacy, energy efficiency, and resource management techniques. Additionally, we discuss communication protocols and technologies, detailing both in an architectural overview from the edge devices up to the cloud. Differently from traditional cloud computing, the fog concept demonstrates better performance in terms of time-sensitive requirements and network data traffic. Finally, based on the evaluation of the current technologies for e-Health, open research issues and challenges are identified, and further research directions are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248890 | PMC |
http://dx.doi.org/10.3390/s20092553 | DOI Listing |
BMC Bioinformatics
January 2025
Solu Healthcare Oy, Kalevankatu 31 A 13, 00100, Helsinki, Finland.
Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.
View Article and Find Full Text PDFUrban Inform
January 2025
IVL Swedish Environmental Research Institute LTD., PO Box 530 21, SE-400 14 Gothenburg, Sweden.
In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
The distributed nature of IoT systems and new trends focusing on fog computing enforce the need for reliable communication that ensures the required quality of service for various scenarios. Due to the direct interaction with the real world, failure to deliver the required QoS level can introduce system failures and lead to further negative consequences for users. This paper introduces a prediction-based resource allocation method for Multi-Access Edge Computing-capable networks, aimed at assurance of the required QoS and optimization of resource utilization for various types of IoT use cases featuring adaptability to changes in users' requests.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Most current research in cloud forensics is focused on tackling the challenges encountered by forensic investigators in identifying and recovering artifacts from cloud devices. These challenges arise from the diverse array of cloud service providers as each has its distinct rules, guidelines, and requirements. This research proposes an investigation technique for identifying and locating data remnants in two main stages: artefact collection and evidence identification.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape. However, these technological strides have introduced new challenges, particularly in cybersecurity. IoT devices, inherently connected to the internet, are susceptible to various forms of attacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!