Using the Global Navigation Satellite System (GNSS), it is difficult to provide continuous and reliable position service for vehicle navigation in complex urban environments, due to the natural vulnerability of the GNSS signal. With the rapid development of the sensor technology and the reduction in their costs, the positioning performance of GNSS is expected to be significantly improved by fusing multi-sensors. In order to improve the continuity and reliability of the vehicle navigation system, we proposed a multi-sensor tight fusion (MTF) method by combining the inertial navigation system (INS), odometer, and barometric altimeter with the GNSS technique. Different fusion strategies were presented in the open-sky, insufficient satellite, and satellite outage environments to check the performance improvement of the proposed method. The simulation and real-device tests demonstrate that in the open-sky context, the error of sensors can be estimated correctly. This is useful for sensor noise compensation and position accuracy improvement, when GNSS is unavailable. In the insufficient satellite context (6 min), with the help of the barometric altimeter and a clock model, the accuracy of the method can be close to that in the open-sky context. In the satellite outage context, the error divergence of the MTF is obviously slower than the traditional GNSS/INS tightly coupled integration, as seen by odometer and barometric altimeter assisting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249057PMC
http://dx.doi.org/10.3390/s20092551DOI Listing

Publication Analysis

Top Keywords

vehicle navigation
12
barometric altimeter
12
multi-sensor tight
8
tight fusion
8
navigation system
8
odometer barometric
8
insufficient satellite
8
satellite outage
8
open-sky context
8
context error
8

Similar Publications

Background: Cognitive changes affecting performance are subtle in early stages of Alzheimer's Disease (AD) and may emerge only with more complex tasks. Driving is a highly challenging instrumental activity of daily living, requiring higher order integration of cognitive skills. For example, driving on freeway entrance ramps requires heightened cognitive engagement such as rapid responses to fast-emerging traffic and sudden speed changes, combining sensory processing and manipulative actions.

View Article and Find Full Text PDF

Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range.

View Article and Find Full Text PDF

Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks.

View Article and Find Full Text PDF

GPS/VIO integrated navigation system based on factor graph and fuzzy logic.

Sci Rep

December 2024

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.

View Article and Find Full Text PDF

A robust MPPT framework based on GWO-ANFIS controller for grid-tied EV charging stations.

Sci Rep

December 2024

Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

As electric vehicles gain popularity, there has been a lot of interest in supporting their continued development with the aim of enhancing their dependability, environmental advantages, and charging efficiency. The scheduling of navigation and charging for electric vehicles is among the most well-known research topics. For optimal navigation and charging scheduling, the coupled network state between the transportation and power networks must be met; moreover, the scheduling outcomes might significantly impact these networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!