The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is , whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new phages, and , isolated from environmental samples. These phages belong to the genus within the family . Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect capsular types K22 and K37. In addition, we found that phage also infects capsular type K13 and is capable of striping the capsules of KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage is conferred by a second, divergent depolymerase. Phage encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few capsular types. This constitutes an important challenge for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246685 | PMC |
http://dx.doi.org/10.3390/ijms21093160 | DOI Listing |
Sci Adv
January 2025
Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) family transporters are essential in glycan synthesis, flipping lipid-linked precursors across cell membranes. Yet, how they select their substrates remains enigmatic. Here, we investigate the substrate specificity of the MOP transporters in the capsular polysaccharide (CPS) synthesis pathway in .
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand.
Vibriosis caused by is a major problem in aquatic animals, particularly brown marble groupers (). biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, Tunis 2092, Tunisia.
: is an opportunistic pathogen that causes a wide range of infections worldwide. The emergence and spread of multidrug-resistant clones requires the implementation of novel therapeutics, and phages are a promising approach. : In this study, two phages, KpTDp1 and KpTDp2, were isolated from wastewater samples in Tunisia.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, Moscow, 111123, Russia.
Background: The infections of bacterial origin represent a significant problem to the public healthcare worldwide both in clinical and community settings. Recent decade was marked by limiting treatment options for bacterial infections due to growing antimicrobial resistance (AMR) acquired and transferred by various bacterial species, especially the ones causing healthcare-associated infections, which has become a dangerous issue noticed by the World Health Organization. Numerous reports shown that the spread of AMR is often driven by several species-specific lineages usually called the 'global clones of high risk'.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!