The topological derivative tool is applied here in structural health monitoring (SHM) problems to locate small defects in a material plate with complex geometry that is subject to permanent multifrequency guided waves excitation. Compared to more standard SHM methods, based in measuring the time-lag between emitted and received propagative pulses plus some postprocessing, the topological derivative somehow compares the measured and computed (solving the full elasto-dynamic equations) response of the damaged plate, instead of relying on only the time of flight of the wave. Thus, the method profits the knowledge behind the physics of the problem and can cope with scenarios in which classical methods give poor results. The authors of this paper have already used the topological derivative in rectangular plates with constant thickness, but with defects consisting simply in both through slits and inclusions of a different material, and actuators/sensors located near the boundary, which makes very difficult to use standard SHM methods. This is an extension of the method, also considering the much more difficult to analyze case of plates with variable thickness and complex (non-rectangular) planform.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249218 | PMC |
http://dx.doi.org/10.3390/s20092529 | DOI Listing |
Front Neurosci
January 2025
Department of Mathematics, University of Antwerp-Interuniversity Microelectronics Centre (imec), Antwerp, Belgium.
Introduction: The study of attention has been pivotal in advancing our comprehension of cognition. The goal of this study is to investigate which EEG data representations or features are most closely linked to attention, and to what extent they can handle the cross-subject variability.
Methods: We explore the features obtained from the univariate time series from a single EEG channel, such as time domain features and recurrence plots, as well as representations obtained directly from the multivariate time series, such as global field power or functional brain networks.
J Mol Model
January 2025
PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Alappuzha, Kerala, 688003, India.
Holey nanographene, an allotrope of carbon arranged in two dimensions, has gained remarkable attention as a nanomaterial with several potential uses in numerous industries, such as electronics, energy storage, healthcare, and environmental cleanup, because of its high carrier mobility, flexibility, transparency, high surface area, conductivity, and chemical stability. The fundamental holey nanographene is assembled in a linear form to create the holey nanographene chain (HNC) that is being discussed. To fully utilize it in various applications, it is essential to comprehend the basic ideas guiding its behavior at the nanoscale; for that, we find various topological indices for this holey nanographene chain using the cut method.
View Article and Find Full Text PDFNanoscale
January 2025
Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of autoantibodies, resulting in inflammation and organ damage. Although extensive research has been conducted on SLE pathogenesis, a comprehensive understanding of its molecular landscape in different cell types has not been achieved. This study uncovers the molecular mechanisms of the disease by thoroughly examining gene regulatory networks within neutrophils, dendritic cells, T cells, and B cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!