Image segmentation is one of the most critical tasks in Magnetic Resonance (MR) images analysis. Since the performance of most current image segmentation methods is suffered by noise and intensity non-uniformity artifact (INU), a precise and artifact resistant method is desired. In this work, we propose a new segmentation method combining a new Hidden Markov Random Field (HMRF) model and a novel hybrid metaheuristic method based on Cuckoo search (CS) and Particle swarm optimization algorithms (PSO). The new model uses adaptive parameters to allow balancing between the segmented components of the model. In addition, to improve the quality of searching solutions in the Maximum a posteriori (MAP) estimation of the HMRF model, the hybrid metaheuristic algorithm is introduced. This algorithm takes into account both the advantages of CS and PSO algorithms in searching ability by cooperating them with the same population in a parallel way and with a solution selection mechanism. Since CS and PSO are performing exploration and exploitation in the search space, respectively, hybridizing them in an intelligent way can provide better solutions in terms of quality. Furthermore, initialization of the population is carefully taken into account to improve the performance of the proposed method. The whole algorithm is evaluated on benchmark images including both the simulated and real MR brain images. Experimental results show that the proposed method can achieve satisfactory performance for images with noise and intensity inhomogeneity, and provides better results than its considered competitors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.2990346DOI Listing

Publication Analysis

Top Keywords

hybrid metaheuristic
12
brain images
8
hidden markov
8
markov random
8
random field
8
metaheuristic algorithm
8
image segmentation
8
noise intensity
8
hmrf model
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!