Targeted delivery of antitumor drugs is especially important for tumour therapy. Tumour targeting peptides have been shown to be very effective drug carriers for tumour therapy. Interleukin-4 receptor (IL-4R) is overexpressed on the surface of various human solid tumours. To obtain a better targeting peptide, we first designed a novel targeting peptide derived from interleukin-4 (IL-4), ILBP-b. ILBP-b contains the key high-affinity binding residue E9 of IL-4 to IL-4R. Compared with a reported targeting peptide ILBP-a (containing another key high affinity residue R88), ILBP-b was proved to be a better targeting peptide by the fluorescence experiments. Then, we further fused ILBP-b and ILBP-a to increase the multisite-binding ability of ILBP-b and got a better targeting peptide ILBP-ba. ILBP-ba showed a stronger preferential binding ability to IL-4R high-expressing cells than ILBP-a and ILBP-b. Competitive binding experiments demonstrated ILBP-ba specifically targets IL-4R. By fusing ILBP-ba with drug protein trichosanthin (TCS), drug carrying experiments showed that ILBP-ba could specifically enhance the killing effect of TCS on IL-4R high-expressing tumour cells (more than 10 folds). These results indicated that ILBP-ba has great potential for drug delivery applications targeting IL-4R and will be beneficial for the development of tumour therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186X.2020.1764964 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.
Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.
Alzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Washington University School of Medicine, St. Louis, MO, USA.
Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).
Background: The spatiotemporal pattern of the spread of pathologically modified tau through brain regions in Alzheimer's disease (AD) can be explained by prion-like cell-to-cell seeding and propagation of misfolded tau aggregates. Hence, to develop targeted therapeutic antibodies, it is important to identify the seeding- and propagation-competent tau species. The hexapeptide VQIINK of tau is a critical region for tau aggregation, and K280 is acetylated in various tauopathies including AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!