Solid residues such as primary sludge (PS), waste activated sludge (WAS), and food waste (FW) can be stabilized through anaerobic digestion (AD). Application of the thermal hydrolysis process (THP) prior to AD results in several benefits in AD and dewatering. However, soluble recalcitrant compounds associated with Maillard reactions have been identified after THP which can impact downstream processes and water discharge limits. In this study, the soluble colloidal chemical oxygen demand, color, ultraviolet absorbance at 254 nm and dissolved organic nitrogen in seven full-scale THP facilities were quantified and compared. The THP substrate influenced the concentration of soluble melanoidin-associated compounds in the digestates. THP implementation in five water resource recovery facilities (WRRFs) was modeled and found to give a 3-8 mg/L increase on the water effluent COD concentration depending on the PS/WAS ratio. The results provide novel information useful in planning new WRRFs and optimization of existing facilities. PRACTITIONER POINTS: High amounts of WAS in substrate resulted in higher concentrations of CODsc, color and dissolved organic nitrogen in the digestate. Food waste treated at 145°C showed equal or lower concentrations of all components compared with sludge operated at 165°C. Installation of THP will increase the COD concentration in the water effluent of a water resource recovery facility. The characteristics of the THP substrate are important to consider in cost/benefit analysis when planning the installation of THP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.1351DOI Listing

Publication Analysis

Top Keywords

soluble recalcitrant
8
recalcitrant compounds
8
thermal hydrolysis
8
food waste
8
thp
8
dissolved organic
8
organic nitrogen
8
thp substrate
8
water resource
8
resource recovery
8

Similar Publications

Anaerobic digestion (AD) offers great potential for pollutant removal and bioenergy recovery. However, it faces challenges when using livestock manure (LSM) as a feedstock given its high content of refractory materials (e.g.

View Article and Find Full Text PDF

Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor.

Microb Cell Fact

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

Background: The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants.

View Article and Find Full Text PDF

Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients.

New Phytol

January 2025

Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.

Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness.

View Article and Find Full Text PDF

Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations.

View Article and Find Full Text PDF
Article Synopsis
  • This text discusses the role of a specific bacterium in dental caries and its key characteristics that make it pathogenic, including acid production and biofilm formation.
  • The methanolic extract of a plant (MEPB) shows significant antibiofilm activity and reduces the virulence factors of the bacterium without harming its viability.
  • Additionally, MEPB has been tested for safety and found non-toxic, with specific fatty acids identified as active components contributing to its beneficial effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!