Fragment-based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease-relevant targets. Among the numerous screening techniques, fluorine-detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high-quality and diverse library containing nearly 4000 fragments and screening for target-specific binders within days. At the core of the approach is a novel broadband relaxation-edited NMR experiment that covers the entire chemical shift range of drug-like F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202002463DOI Listing

Publication Analysis

Top Keywords

chemical space
8
nmr experiment
8
comprehensive high-throughput
4
high-throughput exploration
4
exploration chemical
4
space broadband
4
broadband f nmr-based
4
f nmr-based screening
4
screening fragment-based
4
fragment-based lead
4

Similar Publications

Background: Bladder injury during cesarean delivery (CD) in pregnant women with severe placenta accreta spectrum (PAS) disorders mostly occurs in the dissection of vesico-uterine space. Placental MRI may help to assess the risk of bladder injury preoperatively.

Purpose: To identify the high-risk MRI signs of bladder injury during CD in women with severe PAS.

View Article and Find Full Text PDF

Photothermal therapy (PTT) demonstrates significant potential in cancer treatment, wound healing, and antibacterial therapy, with its efficacy largely depending on the performance of photothermal agents (PTAs). Metal-phenolic network (MPN) materials are ideal PTA candidates due to their low cost, good biocompatibility and excellent ligand-to-metal charge transfer properties. However, not all MPNs exhibit significant photothermal properties, and the vast chemical space of MPNs (over 700,000 potential combinations) complicates the screening of high-photothermal materials.

View Article and Find Full Text PDF

Enzymes are molecular machines optimized by nature to allow otherwise impossible chemical processes to occur. Their design is a challenging task due to the complexity of the protein space and the intricate relationships between sequence, structure, and function. Recently, large language models (LLMs) have emerged as powerful tools for modeling and analyzing biological sequences, but their application to protein design is limited by the high cardinality of the protein space.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Sulfate Promotes Compact CaCO Formation and Protects Portland Cement from Supercritical CO Attack.

Environ Sci Technol

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Supercritical (sc) CO in geologic carbon sequestration (GCS) can chemically and mechanically deteriorate wellbore cement, raising concerns for long-term operations. In contrast to the conventional view of "sulfate attack" on cement, we found that adding 0.15 M sulfate to the acidic brine can significantly reduce the impact of scCO attack on Portland cement, resulting in stronger cement than that found in a sulfate-free system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!