Genome-wide association studies (GWASs) in European and East Asian populations have identified more than 40 disease-susceptibility genes in primary biliary cholangitis (PBC). The aim of this study is to computationally identify disease pathways, upstream regulators, and therapeutic targets in PBC through integrated GWAS and messenger RNA (mRNA) microarray analysis. Disease pathways and upstream regulators were analyzed with ingenuity pathway analysis in data set 1 for GWASs (1,920 patients with PBC and 1,770 controls), which included 261 annotated genes derived from 6,760 single-nucleotide polymorphisms ( < 0.00001), and data set 2 for mRNA microarray analysis of liver biopsy specimens (36 patients with PBC and 5 normal controls), which included 1,574 genes with fold change >2 versus controls ( < 0.05). Hierarchical cluster analysis and categorization of cell type-specific genes were performed for data set 2. There were 27 genes, 10 pathways, and 149 upstream regulators that overlapped between data sets 1 and 2. All 10 pathways were immune-related. The most significant common upstream regulators associated with PBC disease susceptibility identified were interferon-gamma (IFNG) and CD40 ligand (CD40L). Hierarchical cluster analysis of data set 2 revealed two distinct groups of patients with PBC by disease activity. The most significant upstream regulators associated with disease activity were IFNG and CD40L. Several molecules expressed in B cells, T cells, Kupffer cells, and natural killer-like cells were identified as potential therapeutic targets in PBC with reference to a recently reported list of cell type-specific gene expression in the liver. : Our integrated analysis using GWAS and mRNA microarray data sets predicted that IFNG and CD40L are the central upstream regulators in both disease susceptibility and activity of PBC and identified potential downstream therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193132PMC
http://dx.doi.org/10.1002/hep4.1497DOI Listing

Publication Analysis

Top Keywords

upstream regulators
12
integrated gwas
8
mrna microarray
8
microarray analysis
8
primary biliary
8
biliary cholangitis
8
disease pathways
8
pathways upstream
8
gwas mrna
4
analysis identified
4

Similar Publications

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

Development and application of a cGPS 20K liquid-phase SNP microarray in Jiaji ducks.

Poult Sci

December 2024

Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China. Electronic address:

In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS.

View Article and Find Full Text PDF

Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.

View Article and Find Full Text PDF

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.

Biosensors (Basel)

November 2024

Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.

Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!