Peroxiredoxins from the Prx1 subfamily (Prx) are moonlighting peroxidases that operate in peroxide signaling and are regulated by sulfinylation. Prxs offer a major model of protein-thiol oxidative modification. They react with HO to form a sulfenic acid intermediate that either engages into a disulfide bond, committing the enzyme into its peroxidase cycle, or again reacts with peroxide to produce a sulfinic acid that inactivates the enzyme. Sensitivity to sulfinylation depends on the kinetics of these two competing reactions and is critically influenced by a structural transition from a fully folded (FF) to locally unfolded (LU) conformation. Analysis of the reaction of the Tsa1 Prx with HO by Trp fluorescence-based rapid kinetics revealed a process linked to the FF/LU transition that is kinetically distinct from disulfide formation and suggested that sulfenate formation facilitates local unfolding. Use of mutants of distinctive sensitivities and of different peroxide substrates showed that sulfinylation sensitivity is not coupled to the resolving step kinetics but depends only on the sulfenic acid oxidation and FF-to-LU transition rate constants. In addition, stabilization of the active site FF conformation, the determinant of sulfinylation kinetics, is only moderately influenced by the Prx C-terminal tail dynamics that determine the FF → LU kinetics. From these two parameters, the relative sensitivities of Prxs toward hyperoxidation with different substrates can be predicted, as confirmed by in vitro and in vivo patterns of sulfinylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189429 | PMC |
http://dx.doi.org/10.1021/acscatal.9b04471 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.
It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Maryland, USA. Electronic address:
Ca/calmodulin-dependent protein kinase II α (CaMKIIα) "autonomous" activation induced by Thr286 phosphorylation has a crucial role in synaptic plasticity. Previous studies showed that in Alzheimer's disease brain, CaMKIIα autophosphorylation at Thr286 is reduced while the level of cysteine-oxidized CAMKIIα is elevated. We performed tryptic mapping of the oxidized CaMKIIα and discovered the formation of a disulfide between the N-terminal Cys6 and the regulatory domain Cys280.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
A highly efficient method has been developed for synthesizing 4-dienyl dihydropyridines through the nucleophilic dearomatization of activated pyridines using vinyl sulfoxonium ylides. This reaction follows the sequence involving ylide addition to activated pyridine, [2,3]-sigmatropic rearrangement, and subsequent sulfenic acid elimination. The resulting 4-dienyl dihydropyridines are then used in the synthesis of highly substituted -heterocyles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!