is a causative agent for pulmonary infection and meningoencephalitis. Understanding the host's response to infection is critical for developing effective treatment. Even though some have elucidated the host response at the transcriptome level, little is known about how it modulates its defense machinery through the proteome mechanism or how protein posttranslational modification responds to the infection. In this work, we employed a murine infection model and mass spectrometry to systematically determine the proteome and acetylome statuses of lungs and brains in the early stage of infection. To extensively analyze the host response, we integrated the proteome data to the transcriptome results. Critical genes, including genes involved in phagosome, lysosome, and platelet activation are significantly altered in protein and gene expression during infection. In the acetylome analysis, we demonstrated that lung and brain tissues differentially regulate protein acetylation during infection. The three primary groups of proteins altered in acetylation status are histones, proteins involved in glucose and fatty acid metabolism, and proteins from the immune system. These analyses provide an integrative regulation network of the host responding to and shed new light on understanding the host's regulation mechanism when responding to .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181412PMC
http://dx.doi.org/10.3389/fmicb.2020.00575DOI Listing

Publication Analysis

Top Keywords

proteome acetylome
8
infection
8
understanding host's
8
host response
8
integrative proteome
4
acetylome analyses
4
analyses murine
4
murine responses
4
responses infection
4
infection causative
4

Similar Publications

Butyrate has been proposed as a drug therapy by acting as a lysine deacetylase (KDAC) inhibitor and elevating protein acetylation, in particular on histones. Nonetheless, recent studies suggest that tissues such as the gut can utilize butyrate as a metabolite. We have previously shown that the addition of butyrate induces a rapid increase of oxygen consumption in whole Drosophila melanogaster heads.

View Article and Find Full Text PDF

Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of to Salt Stress.

J Proteome Res

January 2025

College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China.

Article Synopsis
  • A certain beneficial microorganism in the rhizosphere enhances plant growth and tolerance to salt stress, but the specific mechanisms at the post-translational modification level were not well understood.
  • Researchers identified various lysine modifications, specifically noting that acetylation levels increased significantly in response to salt stress, affecting a large number of proteins involved in vital processes related to salt tolerance.
  • The study also highlighted how specific acetylation sites on a protective enzyme, thiol peroxidase, play a crucial role in managing reactive oxygen species, thus influencing bacterial growth under salt conditions.
View Article and Find Full Text PDF

SIPSC-Kac: Integrating swarm intelligence and protein spatial characteristics for enhanced lysine acetylation site identification.

Int J Biol Macromol

December 2024

Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China. Electronic address:

Elucidation of post-translational modifications (PTMs), such as lysine acetylation (Kac), is crucial for understanding protein function and regulation. Although traditional experimental methods for identifying Kac sites are accurate, they are time-consuming and costly, leading to incomplete acetylome mapping. Computational approaches, particularly those incorporating machine learning, offer a rapid alternative, but face challenges owing to dataset imbalance, limited feature space, and the need for more effective feature-selection algorithms.

View Article and Find Full Text PDF

Acetylomics reveals an extensive acetylation diversity within .

Microlife

September 2024

Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium.

Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!