AI Article Synopsis

  • MUTYH-associated polyposis (MAP) is a genetic disorder linked to mutations in the MUTYH gene, characterized by the development of multiple polyps in the colon and a higher risk of colorectal cancer.
  • A group of French experts updated guidelines for diagnosing and managing this condition based on new genetic insights since the original recommendations in 2011 may no longer be applicable.
  • The revised work covers the clinical implications, genetic testing strategies, differential diagnoses, and management recommendations for individuals affected by MAP, including considerations for those with single MUTYH gene mutations.

Article Abstract

MUTYH-associated polyposis (MUTYH-associated polyposis, MAP) is an autosomal recessive inheritance disorder related to bi-allelic constitutional pathogenic variants of the MUTYH gene which was first described in 2002. In 2011, a group of French experts composed of clinicians and biologists, performed a summary of the available data on this condition and drew up recommendations concerning the indications and the modalities of molecular analysis of the MUTYH gene in index cases and their relatives, as well as the management of affected individuals. In view of recent developments, some recommendations have become obsolete, in particular with regard to the molecular analysis strategy since MUTYH gene has been recently included in a consensus panel of 14 genes predisposing to colorectal cancer. This led us to revise all the points of the previous expertise. We report here the revised version of this work which successively considers the phenotype and the tumor risks associated with this genotype, the differential diagnoses, the indication criteria and the strategy of the molecular analysis and the recommendations for the management of affected individuals. We also discuss the phenotype and the tumor risks associated with mono-allelic pathogenic variants of MUTYH gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bulcan.2020.02.004DOI Listing

Publication Analysis

Top Keywords

mutyh gene
16
molecular analysis
12
mutyh-associated polyposis
8
pathogenic variants
8
variants mutyh
8
management individuals
8
phenotype tumor
8
tumor risks
8
risks associated
8
[mutyh-associated polyposis
4

Similar Publications

Article Synopsis
  • This study investigated the presence of rare germline variants in DNA damage response (DDR) genes among lung cancer patients and healthy controls, focusing on non-Hispanic Whites and African Americans.
  • Researchers analyzed data from 3,040 participants and found that lung cancer cases had a higher occurrence of these pathogenic variants compared to controls, particularly among those with adenocarcinoma.
  • The findings suggest that specific DDR gene variants are linked to lung cancer risk, especially in never smokers and those not qualifying for current screening guidelines, indicating the need for further research in these groups.
View Article and Find Full Text PDF

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications.

Transl Oncol

February 2025

Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia. Electronic address: https://twitter.com/petergeorgeson.

Background: Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels.

Methods: Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants.

View Article and Find Full Text PDF

Landscape of Multilocus Inherited Neoplasia Allele Syndrome in Mexican Population.

JCO Glob Oncol

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México.

Purpose: Hereditary cancer syndromes (HCS) explain 5%-10% of all cancer cases. Patients with more than one germline pathogenic variant (GPV) result in a clinical syndrome known as multilocus inherited neoplasia allele syndrome (MINAS). In recent years, an increasing number of MINAS cases have been reported.

View Article and Find Full Text PDF

Role of Mutyh in Oxidative Stress Damage in Retinopathy of Prematurity.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Neonatology, Children's Hospital of Nanjing Medical University,Nanjing 210000,China.

Objective To explore the role of the base mismatch repair gene Mutyh in retinopathy of prematurity(ROP). Methods Mutyh(-/-)and wild-type(WT)mice were used for the modeling of oxygen-induced retinopathy.The retinal oxidative stress was examined,and the ultrastructures of photoreceptors and mitochondria were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!