Visual self-motion information is known to contribute to postural control, but it is unclear precisely which aspects of visual motion information drive changes in posture. We report here results for standing humans which suggest that there is a speed of movement threshold that must be exceeded by a visual stimulus if a posture response is to be generated. We use signal-to-noise ratio (SNR) methods to measure the strength of steady-state visually evoked posture responses (SSVEPRs) to sinusoidal modulations of visual viewpoint position in a virtual environment (VE). Using threshold estimates found from data which show how posture responses depend on visual stimulus amplitude, we show that the sensitivity of the visuo-postural response system increases with the temporal frequency at which the position of one's viewpoint is modulated. We show further that there is a speed of movement threshold, on average 1.85 cm/s, which must be exceeded by a left-right modulation of viewpoint position if a posture response is to be generated. A comparison of visual stimulus visibility to posture response thresholds suggests that one tends to not make postural responses to visual stimuli that are unseen. Finally, we found small correlations between motion sickness in these experiments and both the time spent in the VE and the frequency of viewpoint movement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-020-05816-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!