Stem cells such as mesenchymal stem cells (MSCs) enhance neurological recovery in preclinical stroke models by secreting extracellular vesicles (EVs). Since previous reports have focused on the application of MSC-EVs only, the role of the most suitable host cell for EV enrichment and preclinical stroke treatment remains elusive. The present study aimed to evaluate the therapeutic potential of EVs derived from neural progenitor cells (NPCs) following experimental stroke. Using the PEG technique, EVs were enriched and characterized by electron microscopy, proteomics, rt-PCR, nanosight tracking analysis, and Western blotting. Different dosages of NPC-EVs displaying a characteristic profile in size, shape, cargo protein, and non-coding RNA contents were incubated in the presence of cerebral organoids exposed to oxygen-glucose deprivation (OGD), significantly reducing cell injury when compared with control organoids. Systemic administration of NPC-EVs in male C57BL6 mice following experimental ischemia enhanced neurological recovery and neuroregeneration for as long as 3 months. Interestingly, the therapeutic impact of such NPC-EVs was found to be not inferior to MSC-EVs. Flow cytometric analyses of blood and brain samples 7 days post-stroke demonstrated increased blood concentrations of B and T lymphocytes after NPC-EV delivery, without affecting cerebral cell counts. Likewise, a biodistribution analysis after systemic delivery of NPC-EVs revealed the majority of NPC-EVs to be found in extracranial organs such as the liver and the lung. This proof-of-concept study supports the idea of EVs being a general concept of stem cell-induced neuroprotection under stroke conditions, where EVs contribute to reverting the peripheral post-stroke immunosuppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803677PMC
http://dx.doi.org/10.1007/s12975-020-00814-zDOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
derived neural
8
neural progenitor
8
stroke treatment
8
stem cells
8
neurological recovery
8
preclinical stroke
8
stroke
5
evs
5
npc-evs
5

Similar Publications

Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications.

Drug Des Devel Ther

January 2025

Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People's Republic of China.

Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration.

View Article and Find Full Text PDF

Oral contraceptives (OCs) are approved for use after onset of menarche, which is well before brain maturation is complete. OC use may induce biochemical changes in the brain, especially during the neurobiologically dynamic adolescent/young adult years. MicroRNA cargo in L1CAM-associated extracellular vesicles was measured from serum samples collected from young women using the miRCURY LNA miRNA Focus PCR Panel (Qiagen) and validated using quantitative PCR.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality. Extracellular vesicles (EVs) derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties, which are enhanced by γ-aminobutyric acid. The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p, which is a target for thioredoxin-interacting protein, regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.

View Article and Find Full Text PDF

Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs.

Mater Today Bio

February 2025

Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy.

Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!