Dual detection of biochemical oxygen demand and nitrate in water based on bidirectional Shewanella loihica electron transfer.

Bioresour Technol

Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China. Electronic address:

Published: August 2020

This study for the first time proposed a method for simultaneously measuring BOD and nitrate in water using electrochemically active bacteria. Firstly, the bidirectional extracellular electron transfer (EET) capability of a model electricigen Shewanella loihica PV-4 was revealed. Then, based on the respective outward and inward EET, S. loihica PV-4 was utilized to detection BOD and nitrate. The results demonstrated a positive correlation between the outward EET and BOD (from 0 mg/L to 435 mg/L) while a negative correlation between the inward EET and nitrate (from 0 mg/L to 7 mg/L); both the relationships were well fitted by the combination of traditional linear model and Michaelis-Menten model (R>0.96). Finally, a dual detection method for BOD and nitrate measurements was established based on the ano-cathodophilic capability of S. loihica PV-4 biofilm, and exhibited the characteristics of high accuracy (>80%) and fast analysis (<1h), suggesting a promising prospect in water monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123402DOI Listing

Publication Analysis

Top Keywords

bod nitrate
12
loihica pv-4
12
dual detection
8
nitrate water
8
shewanella loihica
8
electron transfer
8
outward eet
8
nitrate
5
detection biochemical
4
biochemical oxygen
4

Similar Publications

In this study, the phytoremediation potential of Taro (Colocasia esculenta L. Schott) plant was examined, utilizing horizontal subsurface flow constructed wetlands with and without an electric current supply for the purpose of removing pollutants from paper mill effluent. For this, different wetlands were set up with varying concentrations of effluent: CW (Control), CW1 (25%), CW2 (50%), CW3 (75%), CW4 (100%).

View Article and Find Full Text PDF

In the last two decades, cage culture industries have developed in Iranian seas, supplying a portion of the needed protein and contributing to food security. In this paper, environmental impacts of cage culture are investigated, focusing on the physical, hydrodynamical, chemical, geological, and biological oceanographic aspects at the Abbas Abad fish farm in the southern Caspian Sea. Multidisciplinary field measurements were conducted from fall 2018 to late summer 2019 in different oceanographic aspects.

View Article and Find Full Text PDF

Integrating native ornamental plants with substrate amended with lignocellulosic biomass and biochar in vertical sub-surface flow constructed wetlands offers a novel and effective approach to wastewater treatment. This study evaluates the potential of mesocosm constructed wetland systems using native ornamental plants (Canna indica, Lilium wallichianum, and Tagetes erecta) grown in substrates amended with lignocellulosic biomass and biochar. The influent and effluent were analyzed for pH, total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), phosphorus (PO-P), and nitrogen forms, i.

View Article and Find Full Text PDF

Analysis on pollutants removal and sludge characteristics of a novel two-phase anaerobic/aerobic/integrated deoxygenated and anoxic reactor associated with membrane process for treating pesticide wastewater.

Sci Total Environ

December 2024

Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Reactor, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.

Article Synopsis
  • The study compares two wastewater treatment processes: the traditional anaerobic/anoxic/aerobic (A/A/O) method and a novel two-phase anaerobic/aerobic system integrated with a membrane process (P1) for treating pesticide wastewater.
  • Results showed that the new P1 process significantly outperformed the improved A/A/O process (P2), achieving a 67.1% reduction in effluent ethylene thiourea (ETU) levels and a much lower average cyanide concentration (0.40 mg/L compared to 6.67 mg/L in P2).
  • Additionally, P1 demonstrated superior removal efficiencies for chemical oxygen demand (COD) and total
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how selecting and adapting different strains of fungi, yeast, and microalgae can create a consortium for producing bioethanol while treating livestock wastewater.
  • The research process involved isolating specific fungi (like Penicillium chrysogenum) and yeast (like Saccharomyces cerevisiae), which together produced 99.32 ppm of bioethanol and significant glucose levels when grown on cellulosic biomass.
  • Additionally, the experiment showcased that the microalga Chlorella vulgaris thrived in diluted wastewater, achieving substantial nutrient removal with a 92.5% reduction in ammonia, 94.1% in nitrate, and complete phosphate absorption, indicating an effective wastewater treatment method alongside bio
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!