Encoding strategy mediates the effect of electrical stimulation over posterior parietal cortex on visual short-term memory.

Cortex

Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun Yat-Sen University, Guangzhou, China; Peng Cheng Laboratory, Shenzhen, China; Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China. Electronic address:

Published: July 2020

Over past decades, converging neuroimaging and electrophysiological findings have suggested a crucial role of posterior parietal cortex (PPC) in supporting the storage capacity of visual short-term memory (VSTM). Moreover, a few recent studies have shown that electrical stimulation over PPC can enhance VSTM capacity, making it a promising method for improving VSTM function. However, the reliability of these results is still in question because null findings have also been observed. Among studies that reported significant effects, some found increased VSTM capacity only in people with low capacity. Here, we hypothesized that subjects' encoding strategy might be a key source of these variable results. To directly test this hypothesis, we stimulated PPC using transcranial direct-current stimulation (tDCS) in male and female human subjects instructed to employ different encoding strategies during a VSTM recall task. We found that VSTM capacity was higher in subjects who were instructed to remember all items in the supra-capacity array of visual stimuli (i.e., the remember-all group), compared to subjects who were told to focus on a subset of these stimuli (i.e., the remember-subset group). As predicted, anodal tDCS over PPC significantly enhanced VSTM capacity only in the remember-subset group, but not in the remember-all group. Additionally, no effect of encoding strategy or its interaction with electrical stimulation was found on VSTM precision. Together, these results suggest that encoding strategy has a selective influence on VSTM capacity and this influence of encoding strategy mediates the effect of electrical stimulation over PPC on VSTM function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2020.03.005DOI Listing

Publication Analysis

Top Keywords

encoding strategy
20
vstm capacity
20
electrical stimulation
16
vstm
10
strategy mediates
8
mediates electrical
8
posterior parietal
8
parietal cortex
8
visual short-term
8
short-term memory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!