Bacterial adhesion on mineral surface are of fundamental importance in geochemical processes and biogeochemical cycling, such as mineral transformation and clay-mediated biodegradation. In this study, thermodynamics analysis combined with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory as well as the extended DLVO (XDLVO) theory were employed to investigate the adhesion of the Gram-negative PAH-degrading bacteria Sphingomonas sp. GY2B on montmorillonite (Mt). Scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the affinity of GY2B for Mt, and the experimental results could be described well by pseudo-second-order (R = 0.997) and Langmuir model (R = 0.995). The thermodynamics analysis revealed the physical nature of bacterial adhesion onto Mt, which was confirmed by the XDLVO theory. The related surface properties (Zeta potential, hydrodynamic diameter and hydrophobicity) at different ionic strength were determined and the interaction energy between Mt and GY2B were also calculated using the DLVO and XDLVO theories in KCl or CaCl solution. At low ionic strength (≤ 20 mM), GY2B adhesion onto Mt was primarily driven by long-range DLVO forces (e.g. electrostatic repulsion), while short-range (separation distance < 5 nm) Van der Waals and hydrophobic interactions played more important roles in the bacterial adhesion at higher ionic strength (50-100 mM). In addition, Mt had a better adhesion capacity to bacteria in Ca solution than that in K solution, owing to less negative charge and lower energy barrier in mineral-bacteria system in Ca solution. Overall, the adhesion of bacteria onto Mt could be evaluated well on the basis of the XDLVO theory along with thermodynamics analysis. This study provides valuable insights into the clay-mediated microbial remediation of hydrophobic organic contaminants in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111085 | DOI Listing |
RSC Adv
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.
A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.
View Article and Find Full Text PDFBacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen which causes infections in pigs and humans. Despite global efforts, the genome of only one infective phage has been described.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China.
This study evaluated the impact of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) on burn wound with dual-species biofilm. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S.
View Article and Find Full Text PDFInt J Pharm
January 2025
University of Florence, Department of Chemistry, Via Ugo Schiff 6 50019 Sesto Fiorentino, Italy. Electronic address:
Usnic acid (UA) is one of the most abundant secondary metabolites of lichens. Its antibacterial, anti-inflammatory, antiviral, and antitumor properties make it one of the few commercially available lichens compounds. Owing to its low solubility it has limited application, for that reason encapsulation in polymeric micelles (UA-PM) has been used to solve this aspect.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!