Size characterization of extracellular vesicles (EVs) and drug delivery liposomes is of great importance in their applications in diagnosis and therapy of diseases. There are many different size characterization techniques used in the field, which often report different size values. Besides technological biases, these differences originate from the fact that various methods measure different physical quantities to determine particle size. In this study, the size of synthetic liposomes with nominal diameters of 50nm and 100nm, and red blood cell-derived EVs (REVs) were measured with established optical methods, such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), and with emerging non-optical methods such as microfluidic resistive pulse sensing (MRPS) and very small-angle neutron scattering (VSANS). The comparison of the hydrodynamic sizes obtained by DLS and NTA with the sizes corresponding to the excluded volume of the particles by MRPS enabled the estimation of the thickness of the hydration shell of the particles. The comparison of diameter values corresponding to the boundary of the phospholipid bilayer obtained from VSANS measurements with MRPS size values revealed the thickness of the polyethylene glycol-layer in case of synthetic liposomes, and the thickness of the protein corona in case of REVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111053 | DOI Listing |
J Mater Chem B
January 2025
College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release.
View Article and Find Full Text PDFCell Mol Immunol
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France.
In the aim of designing and developing a novel saponin-based adjuvant system, we combined the QS21 saponin with low microgram amounts of the fully synthetic TLR4 agonist, E6020, in cholesterol-containing liposomes. The resulting adjuvant system, termed SPA14, appeared as a long-term stable and homogeneous suspension of mostly unilamellar and a few multilamellar vesicles, with an average hydrodynamic diameter of 93 nm, when formulated in citrate buffer at pH 6.0-6.
View Article and Find Full Text PDFWe report a comprehensive evaluation of the toxin B (TcdB) vaccine adjuvanted with a dual Toll-like receptor ligand liposome adjuvant for infection (CDI). The vaccine completely protected mice from a lethal infection. Compared to alum adjuvanted TcdB, it generated functionally superior systemic antibodies and supported strong memory B cell and gut IgA responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!