We report the engendering an isogenic iPSC line from the IBMS-iPSC-014-05 with homozygous correction of the R803X, Chr4: 88989098C > T in PKD2, using CRISPR/Cas9 technology. The results from the isogenic control, IBMS-iPSC-014-05C, showed that mutation had been corrected, while maintaining normal morphology, pluripotency, and differentiation capacity into three germ layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2020.101784 | DOI Listing |
Alzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Alzheimers Dement
December 2024
Universidad Autónoma de San Luis Potosi, San Luis Potosi, SL, Mexico.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease, characterized by a decrease in cognitive and behavioral functions of patients. Between the multiple potential disease-modifying therapeutics for AD, we have monoclonal antibodies as aducanumab, lecanemab, and donanemab. Recent results from the TRAILBLAZER-ALZ trial, highlighted donanemab as a promising monoantibodies treatment of early symptomatic AD.
View Article and Find Full Text PDFBackground: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.
Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).
Alzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: Alzheimer's disease (AD) presents challenges with its complex neurodegenerative mechanisms, leading to a high failure rate in clinical trials. While drug repositioning offers a cost-effective solution, the lack of a subtype-driven strategy hinders success. Previously, we defined genetic subtypes and their prioritized genes for each genetic subtype (Sahelijo et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!