Although interest in transgenerational phenomena is constantly growing, little is known about the long-term toxicity of nanoparticles. In this study we investigate the multigenerational effects of graphene oxide (GO) which was given to Acheta domesticus in low doses (0.2, 2 and 20 μg·g of food) for three subsequent generations. We assessed the influence of GO nanoparticles in many contexts, basing on parameters which represented different levels of biological organization: activity of antioxidant enzymes, level of apoptosis, DNA damage, histological analysis, hatching abilities, body mass and body length of insects, as well as their survival rate. The results have shown that exposing insects to nanoparticles over an extended period of time causes surprising intergenerational effects, based on significant differences in the life cycle and reproductive processes, which are not always dose-dependent. The second generation of insects appeared as the most unstable among the parameters that were studied, and did not match trends and patterns in the first and third generation categories. An increase of DNA damage was observed, but only in the third generation. This reduction of genome stability can be perceived as an essential element of adaptation, leading to an increase of genotype variants, which then undergo selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122775 | DOI Listing |
Talanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran.
Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.
As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France.
The world of nanoscales in fluidics is the frontier where the continuum of fluid mechanics meets the atomic, and even quantum, nature of matter. While water dynamics remains largely classical under extreme confinement, several experiments have recently reported coupling between water transport and the electronic degrees of freedom of the confining materials. This avenue prompts us to reconsider nanoscale hydrodynamic flows under the perspective of interacting excitations, akin to condensed matter frameworks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!