A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remediating Indoor Pesticide Contamination from Improper Pest Control Treatments: Persistence and Decontamination Studies. | LitMetric

Remediating Indoor Pesticide Contamination from Improper Pest Control Treatments: Persistence and Decontamination Studies.

J Hazard Mater

U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions & Emergency Response, Homeland Security & Materials Management Division, 109 TW Alexander Dr, Research Triangle Park, NC, 27709, United States.

Published: October 2020

The improper and excessive use of pesticides in indoor environments can result in adverse human health effects, sometimes necessitating decontamination of residential or commercial buildings. A lack of information on effective approaches to remediate pesticide residues prompted the decontamination and persistence studies described in this study. Decontamination studies evaluated the effectiveness of liquid-based surface decontaminants against pesticides on indoor surfaces. Building materials were contaminated with 25-2,400 μg/100cm of the pesticides malathion, carbaryl, fipronil, deltamethrin, and permethrin. Decontaminants included both off-the-shelf and specialized solutions representing various chemistries. Pesticides included in this study were found to be highly persistent in a dark indoor environment with surface concentrations virtually unchanged after 140 days. Indoor light conditions degraded some of the pesticides, but estimated half-lives exceeded the study period. Decontamination efficacy results indicated that the application of household bleach or a hydrogen peroxide-based decontaminant offered the highest efficacy, reducing malathion, fipronil, and deltamethrin by >94-99% on some surfaces. Bleach effectively degraded permethrin (>94%), but not carbaryl (<70%) while the hydrogen peroxide containing products degraded carbaryl (>71-99%) but not permethrin (<54%). These results will inform responders, the general public and public health officials on potential decontamination solutions to remediate indoor surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472880PMC
http://dx.doi.org/10.1016/j.jhazmat.2020.122743DOI Listing

Publication Analysis

Top Keywords

decontamination studies
8
pesticides indoor
8
fipronil deltamethrin
8
decontamination
5
pesticides
5
remediating indoor
4
indoor pesticide
4
pesticide contamination
4
contamination improper
4
improper pest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!