A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain.

Sci Total Environ

Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Spain. Electronic address:

Published: August 2020

The new SARS-CoV-2 coronavirus, which causes the COVID-19 disease, was reported in Wuhan, China, in December 2019. This new pathogen has spread rapidly around more than 200 countries, in which Spain has one of the world's highest mortality rates so far. Previous studies have supported an epidemiological hypothesis that weather conditions may affect the survival and spread of droplet-mediated viral diseases. However, some contradictory studies have also been reported in the same research line. In addition, many of these studies have been performed considering only meteorological factors, which can limit the reliability of the results. Herein, we report a spatio-temporal analysis for exploring the effect of daily temperature (mean, minimum and maximum) on the accumulated number of COVID-19 cases in the provinces of Spain. Non-meteorological factors such as population density, population by age, number of travellers and number of companies have also been considered for the analysis. No evidence suggesting a reduction in COVID-19 cases at warmer mean, minimum and maximum temperatures has been found. Nevertheless, these results need to be interpreted cautiously given the existing uncertainty about COVID-19 data, and should not be extrapolated to temperature ranges other than those analysed here for the early evolution period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194829PMC
http://dx.doi.org/10.1016/j.scitotenv.2020.138811DOI Listing

Publication Analysis

Top Keywords

spatio-temporal analysis
8
analysis exploring
8
early evolution
8
minimum maximum
8
covid-19 cases
8
covid-19
5
exploring temperature
4
temperature covid-19
4
covid-19 early
4
evolution spain
4

Similar Publications

This research presents an intelligent beam-hopping-based grant-free random access (GFRA) architecture designed for secure Internet of Things (IoT) communications in Low Earth Orbit (LEO) satellite networks. In light of the difficulties associated with facilitating extensive device connectivity while ensuring low latency and high reliability, we present a beam-hopping GFRA (BH-GFRA) scheme that enhances access efficiency and reduces resource collisions. Three distinct resource-hopping schemes, random hopping, group hopping, and orthogonal group hopping, are examined and utilized within the framework.

View Article and Find Full Text PDF

Over recent years, automated Human Activity Recognition (HAR) has been an area of concern for many researchers due to its widespread application in surveillance systems, healthcare environments, and many more. This has led researchers to develop coherent and robust systems that efficiently perform HAR. Although there have been many efficient systems developed to date, still, there are many issues to be addressed.

View Article and Find Full Text PDF

Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM.

Sensors (Basel)

December 2024

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD.

View Article and Find Full Text PDF

Epilepsy Prediction and Detection Using Attention-CssCDBN with Dual-Task Learning.

Sensors (Basel)

December 2024

Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China.

Epilepsy is a group of neurological disorders characterized by epileptic seizures, and it affects tens of millions of people worldwide. Currently, the most effective diagnostic method employs the monitoring of brain activity through electroencephalogram (EEG). However, it is critical to predict epileptic seizures in patients prior to their onset, allowing for the administration of preventive medications before the seizure occurs.

View Article and Find Full Text PDF

Background: In the context of public health emergencies, the presence of medical and health talents (MHT) is critically important for support in any country or region. This study aims to analyze the spatial and temporal distributions and evolution of MHT in China and propose strategies and recommendations for promoting a balanced distribution.

Methods: This research used data from 31 provinces in China to construct a multidimensional index system for measuring the agglomeration level of MHT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!