A rapid and convenient method for on-site detection of MON863 maize through real-time fluorescence recombinase polymerase amplification.

Food Chem

State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China. Electronic address:

Published: September 2020

As large-scale planting of genetically modified (GM) crops increases, the development of a rapid and convenient method for on-site detection of GM crops is important. We combined the advantages of recombinase polymerase amplification (RPA) and fluorescence detection to establish a rapid, sensitive, specific, and simple detection platform for on-site detection of MON863 maize. Test samples were added directly to the platform after simple pre-treatment with a DNA extraction-free method. Results were obtained through real-time monitoring with a portable instrument, which facilitated sample-in/answer-out on-site detection. The entire detection process, including sample preparation, RPA and identification of amplification results, was accomplished in approximately 10 min. Furthermore, the detection was achieved with a simple and inexpensive portable device. This method has high potential for application in other fields requiring rapid detection of DNA targets, such as in field research, resource-limited areas, and science education.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.126821DOI Listing

Publication Analysis

Top Keywords

on-site detection
16
detection
9
rapid convenient
8
convenient method
8
method on-site
8
detection mon863
8
mon863 maize
8
recombinase polymerase
8
polymerase amplification
8
rapid
4

Similar Publications

The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility.

View Article and Find Full Text PDF

On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach.

Anal Chim Acta

January 2025

Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.

Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).

View Article and Find Full Text PDF

Rapid on-site colorimetric detection of arsenic(V) by NH-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms.

Anal Chim Acta

January 2025

College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!