Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Functional brain networks were constructed from functional magnetic resonance imaging (fMRI) data originating from 96 healthy adults. These networks possessed a total of 360 nodes, derived from the latest multi-modal brain parcellation method. A novel group network (overlay network) analysis model is proposed to study common attributes as well as differences found in the human brain by analysis of the functional brain network. Currently, the mean network is generally used to represent the group network. But mean networks have a modularity problem making them distinct from real networks. The overlay network is constructed by calculating the connections between the whole brain network regions, and then filtering the connections by limiting the threshold value. We find that the overlay network is closer to the real network condition of the group in terms of network characteristics related to modularity. Multiple network features are applied to investigate the discrepancies between the new group network and the mean network. Individual divergences between brain regions of everyone are also explored. Results show that the brain network of different people has a high consistency in the global measures, while there exist great differences for local measures in brain regions. Some brain regions show variability over other brain regions on most measures. In addition, we explored the impact of different thresholds on the overlay network and find that different thresholds have a greater impact on the clustering coefficient, maximized modularity, strength, and global efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2020.134954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!