Managing cancer is now one of the biggest concerns of health organizations. Many strategies have been developed in drug discovery pipelines to help rectify this problem and two of the best ones are drug repurposing and computational methods. The combination of these approaches can have immense impact on the course of drug discovery. In silico drug repurposing can significantly reduce the time, the cost and the effort of drug development. Computational methods such as structure-based drug design (SBDD) and virtual screening can predict the potentials of small molecule binders, such as drugs, for having favorable effect on a particular molecular target. However, the demand for accuracy and efficiency of SBDD requires more sophisticated and complicated approaches such as unbiased molecular dynamics (UMD) simulation that has been recently introduced. As a complementary strategy, the knowledge acquired from UMD simulations can increase the chance of finding the right candidates and the pipeline of its administration is introduced and discussed in this review. An elaboration of this pipeline is also made by detailing an example, the binding and unbinding pathways of dasatinib-c-Src kinase complex, which shows that how influential this method can be in rational drug repurposing in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.04.007DOI Listing

Publication Analysis

Top Keywords

drug repurposing
16
rational drug
8
repurposing cancer
8
unbiased molecular
8
molecular dynamics
8
virtual screening
8
drug discovery
8
computational methods
8
drug
7
repurposing
4

Similar Publications

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

An Open-Label, Non-randomized, Drug-Repurposing Study to Explore the Clinical Effects of Angiotensin II Type 1 (AT1) Receptor Antagonists on Anxiety and Depression in Parkinson's Disease.

Mov Disord Clin Pract

January 2025

Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.

Background: The cerebral Renin-Angiotensin System might have a role in anxiety and depression development.

Objective: We explored the effects of Angiotensin II Type 1 receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) on anxiety and depression in Parkinson's Disease (PD).

Methods: Four hundred and twenty-three newly diagnosed drug-naïve PD patients were evaluated using the State-Trait Anxiety Inventory (STAI) and Geriatric Depression Scale (GDS-15) tests and were monitored at baseline and for up to 3 years.

View Article and Find Full Text PDF

Cancer is a complex disease with heterogeneous mutational and gene expression patterns. Subgroups of patients who share a phenotype might share a specific genetic architecture including protein-protein interactions (PPIs). We developed the Atlas of Protein-Protein Interactions in Cancer (APPIC), an interactive webtool that provides PPI subnetworks of 10 cancer types and their subtypes shared by cohorts of patients.

View Article and Find Full Text PDF

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

An update on selective estrogen receptor modulator: repurposing and formulations.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics & Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Gujarat, 384012, India.

The selective estrogen receptor modulator (SERM) raloxifene hydrochloride (RLH) is used extensively in the management and prevention of breast cancer and osteoporosis. Recent clinical studies show the repurposing of RLH in various diseases based on its structure and some clinical trials studies. Optimizing the clinical effectiveness of this important drug requires a thorough review of the formulation techniques, patent environment, and analytical procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!