TMEM16A Ca-Activated Cl Channel Regulates the Proliferation and Migration of Brain Capillary Endothelial Cells.

Mol Pharmacol

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan

Published: July 2020

The blood-brain barrier (BBB) is essential for the maintenance of homeostasis in the brain. Brain capillary endothelial cells (BCECs) comprise the BBB, and thus a delicate balance between their proliferation and death is required. Although the activity of ion channels in BCECs is involved in BBB functions, the underlying molecular mechanisms remain unclear. In the present study, the molecular components of Ca-activated Cl (Cl) channels and their physiological roles were examined using mouse BCECs (mBCECs) and a cell line derived from bovine BCECs, t-BBEC117. Expression analyses revealed that TMEM16A was strongly expressed in mBCECs and t-BBEC117 cells. In t-BBEC117 cells, whole-cell Cl currents were sensitive to the Cl channel blockers, 100 μM niflumic acid and 10 μM T16A-A01, and were also reduced markedly by small-interfering RNA (siRNA) knockdown of TMEM16A. Importantly, block of Cl currents with Cl channel blockers or TMEM16A siRNA induced membrane hyperpolarization. Moreover, treatment with TMEM16A siRNA caused an increase in resting cytosolic Ca concentration ([Ca]). T16A-A01 reduced cell viability in a concentration-dependent manner. Either Cl channel blockers or TMEM16A siRNA also curtailed cell proliferation and migration. Furthermore, Cl channel blockers attenuated the trans-endothelial permeability. In combination, these results strongly suggest that TMEM16A contributes to Cl channel conductance and can regulate both the resting membrane potential and [Ca] in BCECs. Our data also reveal how these BCECs may be involved in the maintenance of BBB functions, as both the proliferation and migration are altered following changes in channel activity. SIGNIFICANCE STATEMENT: In brain capillary endothelial cells (BCECs) of the blood-brain barrier (BBB), TMEM16A is responsible for Ca-activated Cl channels and can regulate both the resting membrane potential and cytosolic Ca concentration, contributing to the proliferation and migration of BCECs. The present study provides novel information on the molecular mechanisms underlying the physiological functions of BCECs in the BBB and a novel target for therapeutic drugs for disorders associated with dysfunctions in the BBB.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.119.118844DOI Listing

Publication Analysis

Top Keywords

proliferation migration
16
channel blockers
16
brain capillary
12
capillary endothelial
12
endothelial cells
12
tmem16a sirna
12
bcecs
9
tmem16a
8
blood-brain barrier
8
barrier bbb
8

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

Background And Aims: Alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC) are common liver diseases. Chronic inflammation caused by AH can progress to alcoholic cirrhosis (AC) and eventually HCC.

Methods: This study sought to ascertain potential shared genes between AH and HCC through the utilization of multiple transcriptome databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!