Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models.

J Exp Clin Cancer Res

Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA.

Published: May 2020

The heterogeneous tumor microenvironment (TME) is highly complex and not entirely understood. These complex configurations lead to the generation of oxygen-deprived conditions within the tumor niche, which modulate several intrinsic TME elements to promote immunosuppressive outcomes. Decoding these communications is necessary for designing effective therapeutic strategies that can effectively reduce tumor-associated chemotherapy resistance by employing the inherent potential of the immune system.While classic two-dimensional in vitro research models reveal critical hypoxia-driven biochemical cues, three-dimensional (3D) cell culture models more accurately replicate the TME-immune manifestations. In this study, we review various 3D cell culture models currently being utilized to foster an oxygen-deprived TME, those that assess the dynamics associated with TME-immune cell penetrability within the tumor-like spatial structure, and discuss state of the art 3D systems that attempt recreating hypoxia-driven TME-immune outcomes. We also highlight the importance of integrating various hallmarks, which collectively might influence the functionality of these 3D models.This review strives to supplement perspectives to the quickly-evolving discipline that endeavors to mimic tumor hypoxia and tumor-immune interactions using 3D in vitro models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195738PMC
http://dx.doi.org/10.1186/s13046-020-01583-1DOI Listing

Publication Analysis

Top Keywords

vitro models
12
tumor hypoxia
8
hypoxia tumor-immune
8
tumor-immune interactions
8
cell culture
8
culture models
8
models
5
mimicking tumor
4
interactions employing
4
employing three-dimensional
4

Similar Publications

Background: The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate.

Purpose: To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Sempervirine inhibits proliferation, invasion and metastasis of ovarian cancer cells and induces ultrastructural changes in vivo.

J Ovarian Res

January 2025

Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.

Ovarian cancer is one of the deadliest gynecological malignancies due to its late diagnosis and easy recurrence. Therefore, it is urgent to develop novel therapeutics for ovarian cancer treatment. In this study, we evaluated the anti-ovarian cancer effects of sempervirine in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!