Polymers (Basel)
Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province, Hangzhou 310014, China.
Published: April 2020
The bistability of anti-symmetric thin shallow cylindrical polymer composite shells, made of carbon fiber/epoxy resin, has already been investigated based on the uniform curvature and inextensible deformation assumptions by researchers in detail. In this paper, a non-uniform curvature model that considers the extensible deformations is proposed. Furthermore, a parametric modeling and automatic postprocessing plug-in component for the bistability analysis of polymer composite cylindrical shells is established by means of ABAQUS-software, by which the equilibrium configurations and the load-displacement curves during the snap process can be easily obtained. The presented analytical model is validated by the numerical simulation and literature models, while the factors affecting the bistability of anti-symmetric cylindrical shells are revisited. In addition, the planform effects of anti-symmetric cylindrical shells with rectangular, elliptical and trapezoidal planform are discussed. The results show that the presented analytical model improves the accuracy of the prediction of the principal curvature of second equilibrium configuration and agree well with the numerical results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284821 | PMC |
http://dx.doi.org/10.3390/polym12051001 | DOI Listing |
Materials (Basel)
January 2022
School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China.
This paper proposes a multi-objective optimization model for anti-symmetric cylindrical shell in the bionic gripper structure. Here, the response surface method is used to establish multiple surrogate models of the anti-symmetric cylindrical shell, and the non-dominated sorting genetic algorithm-II (NSGA-II) is used to optimize the design space of the anti-symmetric cylindrical shell; the design points of the anti-symmetric cylindrical shell are verified by experimental methods. The optimization goals are that the first steady state transition load (the transition process of the bionic gripper structure from the open state to the closed state) of the anti-symmetric cylindrical shell is minimized, and the second steady state transition load (the transition process of the bionic gripper structure from the closed state to the open state) is the largest.
View Article and Find Full Text PDFIn this paper, we analyze a cylindrical waveguide consisting of two layers of bianisotropic material with anti-symmetric magnetoelectric coupling tensors. The analysis is carried out in terms of pseudo-electric and pseudo-magnetic fields which satisfy Maxwells' equations with gyrotropic permittivity and permeability tensors. We show that the rotationally symmetric modes of the waveguide are unidirectional with transverse pseudo-electric and transverse pseudo-magnetic modes propagating in opposite directions.
View Article and Find Full Text PDFPolymers (Basel)
April 2020
Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province, Hangzhou 310014, China.
The bistability of anti-symmetric thin shallow cylindrical polymer composite shells, made of carbon fiber/epoxy resin, has already been investigated based on the uniform curvature and inextensible deformation assumptions by researchers in detail. In this paper, a non-uniform curvature model that considers the extensible deformations is proposed. Furthermore, a parametric modeling and automatic postprocessing plug-in component for the bistability analysis of polymer composite cylindrical shells is established by means of ABAQUS-software, by which the equilibrium configurations and the load-displacement curves during the snap process can be easily obtained.
View Article and Find Full Text PDFUltrasound Med Biol
December 2018
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong.
Guided wave imaging for the artery remains in its infancy in clinical practice mainly because of complex arterial microstructure, hemodynamics and boundary conditions. Despite the theoretically known potential effect of the surrounding medium on guided wave propagation in thin media in non-destructive testing, experimental evidence pertaining to thin soft materials, such as the artery, is relatively scarce in the relevant literature. Therefore, this study first evaluated the propagating guided wave generated by acoustic radiation force in polyvinyl alcohol-based hydrogel plates differing in thickness and stiffness under various material coupling conditions (water and polyvinyl alcohol bulk).
View Article and Find Full Text PDFAn analytic study of complete cylindrical focusing of pulses in two dimensions is presented, and compared with the analogous three-dimensional case of focusing over a complete sphere. Such behavior is relevant for understanding the limiting performance of ultrafast, planar photonic and plasmonic devices. A particular spectral distribution is assumed that contains finite energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.