Solid-state nanopores (SSNs) are single-molecule resolution sensors with a growing footprint in real-time bio-polymer profiling-most prominently, but far from exclusively, DNA sequencing. SSNs accessibility has increased with the advent of controlled dielectric breakdown (CDB), but severe fundamental challenges remain: drifts in open-pore current and (irreversible) analyte sticking. These behaviors impede basic research and device development for commercial applications and can be dramatically exacerbated by the chemical complexity and physical property diversity of different analytes. We demonstrate a SSN fabrication approach attentive to nanopore surface chemistry during pore formation, and thus create nanopores in silicon nitride (SiN) capable of sensing a wide analyte scope-nucleic acid (double-stranded DNA), protein (holo-human serum transferrin) and glycan (maltodextrin). In contrast to SiN pores fabricated without this comprehensive approach, the pores are Ohmic in electrolyte, have extremely stable open-pore current during analyte translocation (>1 h) over a broad range of pore diameters ([Formula: see text]3- ∼30 nm) with spontaneous current correction (if current deviation occurs), and higher responsiveness (i.e. inter-event frequency) to negatively charged analytes (∼6.5 × in case of DNA). These pores were fabricated by modifying CDB with a chemical additive-sodium hypochlorite-that resulted in dramatically different nanopore surface chemistry including ∼3 orders of magnitude weaker K (acid dissociation constant of the surface chargeable head-groups) compared to CDB pores which is inextricably linked with significant improvements in nanopore performance with respect to CDB pores.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab8f4dDOI Listing

Publication Analysis

Top Keywords

surface chemistry
12
open-pore current
8
nanopore surface
8
pores fabricated
8
cdb pores
8
pores
5
nanopore
4
nanopore sizing
4
sizing improving
4
improving solid-state
4

Similar Publications

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Construction of Mn-Defective S/MnCdS for Promoting Photocatalytic N Reduction.

Inorg Chem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.

View Article and Find Full Text PDF

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!