Plasticity is a fundamental property of neurons in both the central and peripheral nervous systems, enabling rapid changes in neural network function. The intracardiac nervous system (ICNS) is an extensive network of neurons clustered into ganglionated plexi (GP) on the surface of the heart. GP neurons are the final site of neuronal control of heart rhythm, and pathophysiological remodeling of the ICNS is proposed to feature in multiple cardiovascular diseases, including heart failure and atrial fibrillation. To examine the potential role of GP neuron plasticity in atrial arrhythmia and hypertension, we developed whole cell patch clamp recording techniques from GP neurons in isolated ICNS preparations from aged control (Wistar-Kyoto) and spontaneously hypertensive rats (SHRs). Anesthetized SHRs showed frequent premature ventricular contractions and episodes of atrial arrhythmia following carbachol injection, and isolated SHR atrial preparations were susceptible to pacing induced atrial arrhythmia. Whole cell recordings revealed elevated spontaneous postsynaptic current frequency in SHR GP neurons, as well as remodeled electrophysiology, with significant decreases in action potential amplitude and half-width. SHRs also showed a parallel increase in the number of cholinergic neurons and adrenergic glomus cells in cardiac ganglia, a higher proportion of synaptic α7-subunit but not β2-containing nicotinic receptors, and an elevation in the number of synaptic terminals onto GP neurons. Our data show that significant structural and functional plasticity occurs in the intracardiac nervous system and suggest that enhanced excitability through synaptic plasticity, together with remodeling of cardiac neuron electrophysiology, contributes to the substrate for atrial arrhythmia in hypertensive heart disease. We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00020.2020DOI Listing

Publication Analysis

Top Keywords

intracardiac nervous
20
nervous system
20
atrial arrhythmia
20
hypertensive rats
12
structural functional
8
functional plasticity
8
spontaneously hypertensive
8
atrial
8
recording techniques
8
atrial preparations
8

Similar Publications

Background: Neuromodulation has been shown to increase the efficacy of atrial fibrillation (AF) ablation procedures. However, despite its ability to influence the autonomic nervous system (ANS), the exact mechanism of action remains unclear. The activity of the ANS via the intracardiac nervous system (ICNS) can be inferred from heart rate variability (HRV).

View Article and Find Full Text PDF

Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information.

View Article and Find Full Text PDF
Article Synopsis
  • The heart's proper functioning depends on both the central nervous system and its own local neuronal networks, known as the intracardiac nervous system (IcNS), which has not been thoroughly studied.
  • This research introduces a detailed classification of the IcNS by using advanced techniques like single-cell RNA sequencing, revealing a surprising variety of neuronal types within it.
  • Notably, some identified neurons share characteristics with pacemaker neurons from the central nervous system, highlighting the complexity of the IcNS and its crucial role in maintaining heart rhythm, paving the way for future research on cardiac-related issues.
View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity.

View Article and Find Full Text PDF
Article Synopsis
  • Hypereosinophilic syndrome is defined by elevated eosinophil levels in blood and/or bone marrow, often leading to organ damage and potentially neurological issues.
  • A case study revealed that hypereosinophilia can cause Loeffler endocarditis, resulting in multiple strokes and encephalopathy as initial symptoms.
  • This case emphasizes the need for clinicians to recognize hypereosinophilic syndrome as a possible cause of unusual stroke presentations, especially when neurological symptoms appear first.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!